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So as to treat brittle fracture by an atomic model, problems ln the 

energy equilibria on the crack stability and those in the rate process are 

discussed, and new expressions are proposed. Newly derived critical 

condition of crack propagation for Griffith type through micocrack in 

brittle material is given as follows, 

a = 2(Ey /1) 112 

0 s 

where, a
0

; critical tensile stress (threshold stress of subcritical crack 

growth) operated normal to crack surface and parallel to specimen length, 

E; Young's modulus, ys; surface free energy of the material, l; specimen 

length. 

And it ls shown that the following formulation of rate equation lS 

useful to explain the velocity of crack propagation. 

Where, v; velocity of the reaction like crack propagation, f; frequency 

factor, 6G ; activation energy necessary for the reaction remarked, ~; 
a 

measure unit of the reaction rate (in case of crack propagation, l.e. a 

lattice parameter), 6G
0

; excess free energy stored in the system which is 

expected to be finally dissipated through the reaction. 
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The term expressed in the parenthesis, { } corresponds to an effective 

probability of the transformation and it becomes zero under the critical 

(i.e. equilibrium) condition. A pair of these equations makes it possible 

to treat the equilibrium and the rate process continuously. 

PREFACE 

Stability of a crack in brittle materials under load is a problem of 

thermodynamic equilibrium and the velocity of crack propagation ls a 

problem of reaction rate. In the present report, both problems are 

discussed basically. 

STABILITY OF CRACK 

According to thermodynamics, an equilibrium of two different states of 

same material is expressed by the equality of their free energy level. 

Consider the two different states as shown ln Fig. 1. If the crack size 

2C satisfies a condition 2C << t < w- l, and the product, (l•t•w) lS 

equal to molar volume V, choosing stress free and crack free state of same 

size of material as the reference state, the free energy level of the 

state I can be well approximated by following equation, 

(1) 

where the o is uniform tensile stress operated at the boundary normal to 

the crack surface and along the direction of 1. 

Since the state F is free from stress and free from kinetic energy, the 

excess free energy stored in the system is only the surface free energy 

necessary to separate the specimen in two pieces. That is, 
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Defined initial state (I) and final state free from kinetic energy (F). 

6G = 2y tw = (2Vy /l) 
F s s 

(2) 

The thermal equilibrium between state I and F is given by a condition, 

6G 6G , and following relation is obtained [1). 
I F 

Go= 2(Eys/l)l/2 (3) 

Where, GO is the critical stress of crack extension, i.e. the threshold 

stress of subcritical crack growth. If additional works are concerned 

with y , one can add those works to the y • 
s s 

Though, similar condition to Eq. (3) is already discussed by Griffith 

[2,3], in case of his system, the same treatment with Eq. (1) - (3) gives 

a result, a
0 

= 0. Since his system is characterized by infinite value of 

1 and w. 
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RA'lE NJUATICN TO EXPRESS REACI'ICN OCCURRED IN HETEROGENEDUS SYSTEMS 

There have been proposed many experimental and theoretical formulae 

[4-7], but all of these proposals have not succeeded to take into account 

the threshold condition of the crack propagation. This problems can be 

solved by application of a new proposal for the generalized expression of 

the rate process [8]. That is, 

V (4) 

Where, v; velocity of the reaction, f; frequency factor, ~G ; activation 
a 

energy of a reaction remarked, ~; measure unit of the reaction rate (in 

case of crack propagation, i.e. lattice parameter), ~G0 ; excess energy 

stored in the system which is finally dissipated through the reaction (in 

case of crack propagation, i.e. the energy difference, ~G1 - ~GF in Fig. 

1), R; gas constant, and T; absolute temperature. 

The term expressed in the parenthesis, { } corresponds to an effective 

probability of transformation of the reaction and it becoms zero under the 

equilibrium state expressed in the former section. The expression of Eq. 

(4) is useful to treat a rate process occurred in heterogeneous system 

such as crack propagation, and it makes possible to treat the equilibrium 

and the rate process continuously. Similar expressions to Eq. (4) have 

successfully applied for the explanation of diffusion controlled mass 

transport in heterogeneous systems [9]. 

RA'lE OF CRACK PROPAGATICN 

Consider a system illustrated 1n Fig. (1)-I, and assume 2C and the 

stress satisfying 2C << t < w -1 and a> a
0

• Under the condition, the 

detailes of Eq. (4) can be shown as follows, 
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where, n; number of atomic pairs which must be broken to advance crack an 

atomic spacing, n'; number of atomic pairs bearing maximum stress at the 

crack tip, N; Avogadoro's number, h; Planck's constant, LG ; molar strain 
am 

energy stored in the atomic pair bearing the maximum stress at the crack 

tip [10), 6Gth; molar strain energy supposed to be stored in the atomic 

pair under maximum theoretical stress [11), A; lattice spacing along the 

direction of crack propagation, and 6G
0

; excess free energy stored ln the 

system (in case of the example shown in Fig. 1, i.e. 6G
1

- LGF). In 

general, n = n' may be preserved. 

The LGth increases by the introduction of additional works such as 

dislocation formation and by crack branching, but LG decreases by these 
am 

processes and by crack blunting. Chemical reactions at the crack tip such 

as moisture effect, generally decrease LG . 
th 

LIFE PREDICI'ICN 

The life prediction of precracked specimen by KI mode becomes possible 

by the following formula, using Eq. (5), 

6t fw dC/v(C,a) 
j 2C 

and if 6Gam is linearly propotional to the crack length [10), under a 

condition w > 20C, the result of integration of Eq. (6) is given as 

follows, assuming n = n', 

(6) 

Lt = {exp(-LGC/RT)}/(LG /RTC)(RT/Nh)\(LG /RT)exp(-LG /RT) (7) 
am 0 th 
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where, 6t; time to failure from crack length C to a catastrophe, 6GC; 

molar strain energy stored in the atomic pair bearing maximum stress at 

a crack tip of a crack in length 2C. 
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