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Abstract 

This paper addresses problems on the application of three-

parameter Weibull distribution to multi-axial stress states. T~e 

problems are of practical importance since the fracture strength 

distribution of engineering ceramics is better characterized by 

three-parameter Weibull distribution than by two-parameter one. Based 

on a model, it is shown theoretically that (a) three-parameter Weibull 

distribution can be derived for multi-axial stress states, and (b) 

Weibull modulus is dependent on stress states. Specifically, Weibull 

modulus, m, for uniaxial tension is replaced by m-1/2 and m-1 for 

equi-biaxial and equi-triaxial stress states, respectively. 

1. Introduction 

Investigations into the fracture strength distribution of ceramic 

materials under multi-axial stress states is important from the 

viewpoint of reliability. The author1 ) demonstrated theoretically 

that the 2-parameter Weibull distribution can be extended to multi­

axial stress states, and that Weibull modulus is independent of stress 
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states. The present study examines the fracture statistics using the 

3-parameter Weibull distribution, i.e., the problems in relation to 

the 3-parameter Weibull distribution extended to multi-axial stress 

states and the dependence of Weibull modulus on stress states, These 

problems are of practical importance since the fracture strength 

distribution of recent engineering ceramics is better characterized by 

3-parameter Weibull distribution than by 2-parameter one. 

Vardar and Finnie2 ) argued that the 3-parameter Weibull 

distribution can not be applied theoretically to multi-axial stress 

states. Other investigators also showed implicitly similar results 

3)-5) The analysis in the present paper will reveal if these 

results are valid. 

2. Theoretical Analysis 

Suppose the population of failure strengths of ceramic specimens 

in uni-axial tension follows a 3-parameter Weibull distribution 

F(o) 
o-o m 

1-exp[-( __ u ) ] 
s 

where m, S and ou are shape, scale and location 

respectively. We now study whether or not the same 

distribution (3-parameter Weibull distribution) can 

(1) 

parameters, 

type of 

be derived 

theoretically for multi-axial stress states. Following assumptions 

are made. 

(1) Each specimen contains a large number of flaws, and the 

weakest link theory is applicable. 

(2) These flaws are modelled as internal circular cracks with 

their normal being oriented. uniformly in all the directions. 

(3) Unstable crack extension is governed by the criterion of 



3 

K1~Kc, where K1 is the mode I. stress intensity factor, and Kc is 

the fracture toughness. 

Consider an internal circular crack as shown in Fig.1, where a1 , 

a2 and a3 are principal stresses. The normal stress an acting on the 

crack plane is expressed by 

(2) 

K1 is given by K1=(2/TI)an!Tia, where a is the crack radius. The 

assumption (3) for unstable crack extension is rewritten by 

(3) 

where acr is given by 

TI KC -·--
2 ITia 

(4) 

Let G(acr) be the distribution function of acr• When the left-

hand tail of G(acr) has the form of 

G(ocr) = ( 
acr-ol.l. )m-1 

s, (5) 

the fracture strength distribution in uniaxial tension follows Eq. (1) 

as shown below. Here, m and au in Eq.(5) are the same parameters as 

those in Eq.(1), but 81 is different from 8. S1 stands for a kind of 

strength of a crack whereas 8 stands for a kind of strength of a 

specimen containing a large number of cracks. Now, Eq.(1) will be 

derived from Eq.(5). Suppose that a fictitious specimen containing 

only one crack is subjected to uniaxial tension of (a1 ,a2 ,a3 )=(0,0,a). 

Let F1(a) be the distribution function of the fracture strength of 

this fictitious specimen. - 2e Noting that an is given by 0n-acos , and 

that the orientational probability of the crack within 6~+d6 and 

~+dw is equal to sin6d6dw/4TI, F1(a) is expressed by 

1 J2TIJTI F1 (a) = - G(acos26)sin6d6dw 
4TI 0 0 

(6) 
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Here, it is to be understood that G=O for ocos2e<ou• Substituting 

Eq.(5) into Eq.{6), the left-hand tail of F1(o) is expressed by 

= ~ ff ( ocos28-ou m-1 
(7) F1(o) ) sin8d8di)J 

4lT A e1 

where A is the domain of ocos2e;;;ou' Integrating Eq. (7) and noting 

that the left-hand tail of F1(o) is concerned yield 

(o-ou)m 
-.----

0 m-1 
i->1 °u 

(8) 
2m 

Let F(o) be the distribution function of the fracture··strength of real 

specimens. It is given by the asymptotic distribution resulting from 

F1(o), since real specimens contain a large number of cracks by the 

assumption (1). This asymptotic distribution is governed by the left­

hand tail of F1(o). Based on the statistics of extremes6), F(o) 

follows the 3-parameter Weibull distribution of Eq.{1) when the left-

hand tail of F1(o) has the form of Eq.(8). Thus, it was demonstrated 

that when the left-hand tail of G(ocr) has the form of Eq.(5), F(o) 

follows Eq.(1). Using Eq.(5), we next derive the fracture strength 

distribution for multi-axial stress states. The case of equi-biaxial 

and of equi-triaxial tensions are discussed. 

(a) Equi-biaxial tension 

Consider the equi-biaxial stress state of (o1,o2,o3)=(o,o,O). 

Noting that on is now given by on=osin2e, the distribution function of 

the fracture strength of fictitious specimens containing only one 

crack, F1{o), is 

F 1 (a) = _2_ J1TJ
2

1T G ( osin28) sin8d8di)J 
4lT 0 0 

(9) 

Substituting Eq.{5) into Eq.(9), the left-hand tail of F1(o) is 

expressed by 
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1 JJ osin
2
e-ou m-1 

F1 (o) = - ( ) sin8d8dljJ 
41f A e1 

( 10) 

and then becomes 

1 1 (o-o )m-112 
F 1 (a) = - B (m'-) S m-¥ o 1/2 

2 2 1 u 
( 11 ) 

where B(m,1/2) is the beta function. The fracture strength 

distribution of real specimens each containing a large number of 

flaws, F(o), can be obtained using Eq.(11) as follows. 

0-0 m-1/2 
F(o) = 1-exp[-( __ u ) ] 

S' 
( 12) 

Eq.(12) is a 3-parameter Weibull distribution with Weibull modulus of 

m-1/2. 8' in Eq.(12) is different from 8 in Eq.(1) since 8' is for 

the equi-biaxial stress state whereas 8 is for the uniaxial stress 

state. 

(b) Equi-triaxial tension 

Consider the equi-triaxial stress state of (o1,o2,o3)=(o,o,o). 

Noting that On is given by on=o, the left-hand tail of the 

distribution function of the fracture strength of the fictitious 

specimens containing only one crack, F1(o), is provided by 

1 J21TJ1T o-o m-1 F1 (o) = - ( __ u_) sin8d8dljJ 
41f 0 0 81 

o-o m-1 
=(--u) 

81 
( 13) 

Hence, the fracture strength distribution of real specimens, F(o), 

is 

o-o m-1 
F(o) = 1-exp[-( __ u ) ] 

S" 
( 14) 

This is a 3-parameter Weibull distribution with Weibull modulus of m-1. 
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S" is different from S and S' due to difference in stress states. 

In the preceding analyses, the criterion of K1~Kc was employed 

for unstable crack extension. We conducted a similar analysis using 

the energy release rate criterion of (1-v2)(K1
2+Krr2 )/E+(1+v)K ][ 2/E 

~Gc, where E and v are Young's modulus and Poisson's ratio, 

respectively. This criterion is based on the assumption that the 

crack extends along its own plane. Assuming v=O for simplicity of 

calculation, this criterion is expressed alternatively by 

( 1 5) 

where 'n is the resultant shear stress acting on the crack plane. It 

was derived in the present work that Eq.(15) instead of Eq.(J) leads 

to the same conclusions as obtained above. The stress state 

dependence of Weibull modulus shown above is rather significant in 

practice, since Weibull modulus, m, of ceramic materials appearing 

in the 3-parameter Weibull distribution is appreciably small (say m~ 

3). 

3. Discussion 

As shown in the previous Chapter, 3-parameter Weibull 

distribution functions can be derived for equi-biaxial and equi-

triaxial stress states when the same type of distribution function is 

assumed for uniaxial stress state. This result is in contrast with 

the conclusion of Vardar and Finnie2). This discrepancy stems from 

the following reason. Vardar and Finnie assumed that Eq.(1) and the 

criterion of on~ocr hold for uni-axial tension. They thought that for 

a multi-axial stress state (o1 ,o2 ,o3 ), Eq.(1) is modified by 
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( 16) 

where the factor k is defined by k=2(2m+1)/Sm so that F(cr1,cr2 ,cr3 ) 

coincides with Eq.(1) when (cr1 ,cr2 ,a3)=(cr,o,o) and cru=O. Taking o1=cr 

and o2=o3=o, Eq.(16) becomes 

F(o) = 1-exp[- ~If (crsin28cos~-cru)msin8d8dlji] (17) 
4lT A 

Since the integration in Eq.(17) does not have the form proportional 

to (cr-ou)m, Eq.(16) never reduces to Eq.(1). Thus, Vardar and Finnie 

concluded that the 3-parameter Weibull distribution function cannot be 

applied to multi-axial stress states. 

The argument of Vardar and Finnie involves a crucial jump in 

logic from Eq.(1) to Eq.(16). Eq.(16) seems correct apparently, but 

actually it does not result from Eq.(1). The fracture strength 

distribution for multi-axial stress states should be derived using the 

statistics of extremes and hence by the left-hand tail of the 

distribution of crcr' If this is done, 3-parameter Weibull 

distributions for multi-axial stress are derived as addressed in 

Chapter 2. 

4. Conclusions 

(1) When the fracture strength of a ceramic material in uniaxial 

tension follows a 3-parameter Weibull distribution, the same type of 

distribution can be derived theoretically for equi-biaxial and equi-

triaxial stress states. This suggests that 3-parameter Weibull 

distribution can be applied to any multi-axial stress states. 
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(2) The modulus of a 3-parameter Weibull distribution is 

dependent on stress states. Specifically, Weibull modulus, m, for 

uniaxial tension, must be replaced by m-1/2 and m-1 for equi-biaxial 

and equi-triaxial stress states respectively. The stress state 

dependence is of practical importance, since Weibull modulus, m, of 

usual engineering ceramics appearing in a 3-parameter Weibull 

distribution is rather small (say m~ 3). 
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Fig.1 Internal circular crack in a multi-axial stress state. 




