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ABSTRACT 

A new concept-generallized multimodal Weibull function-is 

presented based on the competing risk theory and fracture 

mechanics. As the case which has only one random variable, the 

distribution functions of fast-fracture strength, dynamic fatigue 

strength and cyclic fatigue life are reviewed. As a two-variable 

case, the distribution functions of fracture location and crack 

size at fracture origin are showed using the joint probability 

density function with respect to fracture stress and fracture lo-

cation for n fracture causes with experimental verification on 

HP-Si3 N~.The newly developed theory, which involves 3 random 

variables-fracture stress,fracture location and flaw orientation-

is outlined. The method for estimating Weibull parameters, which 

is called as the multistep maximum likelihood method, is reviewed. 

l.Introduction 

Since almost all ceramics are policrystalline made by 

sintering process, they involve many kinds of flaws in their 

surfaces and inside the bodies. 

Flaws which may cause fracture can be divided into three 

categories as follows: 

(A) intrinsic flaws 
(B) coalescing microcracks 
(C) voids, flaws developed from voids. 

In low and medium temperature ranges(T<0.5Tm, Tm:melting 
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temperature), flaws (A) and (B) are predominant; the stress-

strain relation is elastic up to fracture and strength being 

constant against temperature change. In high temperature ranges 

(T>O.STm), flaws (C) are predominant, the stress-strain relation 

is nonlinear, and strength decreases as temperature increases. 

Of the three categories of major flaws that influence the 

strength of structural ceramics, intrinsic flaws are the most 

important. They can further be divided as follows: 

internal flaws: 

surface flaws: 

pores, pore clusters, coarse garains, inc
lusions, internalcracks,weakgrain boun
daries 

cracks caused by machining or impact damage, 
exposed internal flaws 

When ceramic materials are subjected to some kinds of loads 

under a definite environment, these intrinsic flaws 'compete' 

each other and the most hazardous flaw of them acts as a fracture 

origin which leads to final fracture. 

In this review, we suggest that the fracture behaviors of 

ceramics under some conditions can be described by generallized 

multimodal Weibull function. Also we suggest how important the 

data of fracture causes are for estimating the Weibull 

parameters. 

2. Generallized multimodal Weibull Function 

According to the competing risk theory with independent 

risks[1), the probability density function of random variable X 

involving k fracture causes can be formulated by the following 

equation; 
k t( 

f ( x) = n Ri . ":£ "'i 
~=-1 f"·l 

( 1 ) 
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where Ri and )\.j are the re 1 iabi l i ty function (or survival 

probability function) and the failure rate of i-th (or j-th) 

cause of fracture, respectively. We must note that the random 

variable X in Eq.(1) may be a vector; namely, Eq.(1) may be a 

multi-variable joint probability density function. We call Eq.(1) 

as the generallized multimodal Weibull function as long as the 

strength (or life-time) distribution derived from Eq.(1 ), as a 

marginal, is a multimodal (or uni-modal) Weibull distribution 

function. 

In the following we discuss about some probability density 

functions or probability distribution functions in those cases 

which involve up to 3 random variables. 

2.1 One-variable case 

Fast fracture strength 

According to the weakest link theory, the distribution 

function of the fast-fracture strength (6~ must obey so-called 

multimodal Weibull distribution function, which was derived from 

a competing risk model expressed by Eq.(1 ),written as 
K I I( 

f ( 6~ =.2: Bi· exp [-5: Bi l ( 2) 
i:1 .(.:.1 

where Bi: risk of rupture due to the i-th fracture cause and k: 

number of different fracture causes. 

Now let us suppose that a test piece has a stress gradient 

and internal(i=1), surface(i=2) and edge(i=3) cracks for fracture 

causes. Then, for uniaxial Weibull distibution functions 

(functions applicable to uniaxial stress), we have Bi as follows: 

""' B1 =) (~)~V B2:. ( c(/-lflu.),_~:J A 
V a-;, I )A <f;;J. W"l, 

where dV,dA and dL are nondimensional 

B3 ::. ( (11"'-~J)"'~IJ ( 3) 
}v tro1 

volume, surface, and line 

elements, respectively, and mi,6oi,6ui are Weibull parameters. 
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Also, for distribution functions applicable to the 

multiaxial stress state (multiaxial distribution function), Bi is 
" " " given by[2) B,=.£1 [2 ff(h:·.£~-'-)""·Y(Z,,u.,) 

7tvlolo "o• 
D,=1..J [2" (?'-"~'-)"'' ·Y(Z,,u.,)de dA 

1t A Jo "•• 

B3=J (2•-~)M3 •Y(Z3,u,3)dL 
L <103 

sin~~> d9> dedV ( 4) 

where Zi is a quantity derived from unstable crack extension 

conditions in a mixed mode and called an equivalent normal 

stress,and defined by 
I(, c... 

Zi= --
'(dj(c., 

( 5) 

where c: representative crack length, K1c: fracture toughness and 

Yi: geometric constant. Equation (4) is very useful for designing 

brittle-structural components based on statistical analysis. We 

can also estimate the brittle fracture loci under biaxial or 

triaxial stress states (see Fig.1)(3,4J and the fracture behavior 

of ceralilics • .. ;ith ground sur-faces (see Fig.2)[5,6]. 

Dynamic fatigue strength and cyclic fatigue life 

Assuming that the following slow crack growth law is 

dominant in almost the whole life time of the stressed material 

under a certain environment. 

T\ da/dt=AK1 ( 6) 

where da/dt is the crack growth rate, A and n are crack-growth 

parameters, and K1 is a stress intensity factor. Combining the 

iner-t strength distribution (=fast fracture strength), expr-essed 

by multimodal Weibull function (Eq.(3)), with above slow crack 

growth law, we can obtain the distribution functions of static 

and cyclic fatigue life and of dynamic fatigue strength. 

For simplicity, in the following, suppose that 6ui=O. Let 61(>0) 

be the maximum principal stress at any point of the material, and 



is expressed by 

61=6.g(r)t=6m.g(r) 
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( 7) 

where r is a position vector, 6 is a constant stress rate, 6m is 

a representative stress (e.g. the maximum stress), g(r) is a non-

dimensional scalar function of the position vector,t is a time. 

Then, the risks of rupture for dynamic fatigue strength can be 

expressed by the following equations(?]. 
,.J 

Bi= (cSm/cSo1) [Aeff)i ( 8) 

where mi and ooi are "mapped" Weibull parameters given by 

( 9) 

Here, [Aeff)i is a nondimensional effective volume, surface area 

or length of edges, expressed as 
( 1'k Jll.: /(h.\-:2) 

lAeff 1 i= k ~(r-) dAt" ( 1 0) 

where Ai represents the domain of the i-th fracture cause and dAi 

is an infinitesimal volume, surface or line element. 

Figure 3 shows the Weibull plots of the bending strength of 

steatite ceramics under the constant stress rate CJ =2, 74MPa/sec 

by using mean rank method(surface flaws). The dotted line(three-

point bend, in air) and the broken line (four-point bend, in 

vacuum) in the figure are the theoretical curves calculated from 

Egs.(2),(8) and (9). These curves coincide fairly well with the 

experimental results. 

Almost the same stream line, we obtain the risks of rupture 

for cyclic fatigue life of ceramics. In this case, we suppose 

that the maximum principal stress at any point of the material is 

periodic and can be written by 

61 = 6m-g(r)·h(wt), w: angular velocity ( 11 ) 
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where h(wt) is a function of ~t, for example,a sine wave. Then, 

the risk of rupture of cyclic fatigue life ,Nrep, is expressed as 

[ 8] 

ln"~ Bi= (Nrep/Noi) · [Aeff]i ( 1 2) 

where m/'11.. and Noi are also "mapped" Weibull parameters given by 

m/1/i f --·m· 
71..:-2 ~ ( 1 3) 

fl I 'n~ -2 
11 • - (I~ tr" 
No., - . ~1~ / . • v_. 

o:n..\ ll.IW h '1\~ J. V.c.. 

m (wt) ~t 
variables o 2.2 Two 

Let introduce a random-variable vector 

X = (bm, ~ ) 

where 6m is a representative stress (inert strength) and J a 

fracture location. According to Oh and Finnie[9], when a body is 

subjected to a representative stress in a range ( 6m,6m+d6m) and 

fails at a location J by i-th fracture cause, the joint 

probability density function hA~(Om,Jl can be written as 

hA-' (G;.,~)~~v\0-m = v<pC-Bi)~Or~)d~da;. (l 4 l 

where Ai is a domain of i-th fracture cause, Bi is the risk of 

rupture due to i-th fracture cause and Gi is a function of Bi and 

~- Then Bi and Gi for Weibull's uniaxial distribution function 

can be written as 

( 1 5) 

where Y(,) is Heaviside's step function. 

Combining Eq.(l4) with the competing risk theory expressed 

by Eq.(1 ), the joint probability density function hA (Om,Jl 

involving K fracture causes can be formulated as [ 10] 
J< 1<. 

hA ( 0'"' I~ ) ':.. JT R.,: ( o-,.) . ~ Aj 
·l'=·1 j"-1 

( 16) 
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where Ri and }D are given as 

Ri(om) • 1- J~mf~thAi(om,t)dtdom1 (17) 

>.j • hAj (cm, t) /Rj (cm), A • A19 A2 9 ---$ Al(: • 

Here, jf-t. represents the integration over the total domain of Ai; 

the (f) symbol indicates "direct sum" used in set theory. 

From Eqs.(16) and (17), two important marginals can be 

derived. The marginal with respect to fracture stress 6m 

coincides with the multimodal Weibull distribution function. The 

other marginal with respect to fracture location ~ is of the so

called mixture type. 

Analysis of diagnostic data of HP-Si1 N~ 

Ita et al.[11] carried out the 3-point bending test to 415 

HP-si3 N~ specimens (specimens had the following characteristics: 

mean grain size=2.0pm, surface roughness Rmax=0.8pm, half span 

L=1 O.OJT\m, width b=1.5mm, half height h=1.5mm). 

They measured the fracture stress Om, the coordinates of the 

fracture location (x,y) and the flaw size which initiated 

fracture. Using these fracture stress data, the bi-modal Weibull 

parameters mi and 60i (i=1 for inner flaw, i=2 for surface flaw) 

have been estimated utilizing the multimaximum likelihood method 

(see next chapter) as shown in Table 1. 

Using the estimated parameters in Table 1, we can estimate 

the distributions of fracture location, modified fracture stress 

and flaw size. Now we adopt the coordinate systems as shown in 

Fig.4. 

Suppose that there are two types of fracture origin, namely, 
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inner cracks (i=1, the domain. is expressed by A1) and surface 

cracks (i=2, the domain is expressed by A2), and that fracture 

does not occur at the side surfaces of a specimen. 

The cumulative distribution function of the fracture 

location along the x axis SA1~A2 is derived below in Eq.(18); the 

function along the y axis UA1~A2 may be derived in a similar 

fashion, the result being shown in Eq.(19). 

sA,®Az (X)= SA,(x)·'PA,-+ >A,_(x>·tA, 
SA1(X)=(X/L)'In,-t!' ~A,.(X')== (X/L)hl 1-tl (18) 

pA, = ~~ ~~r!da-h\. -0Zp{-B,-h)da-"', PA:t= rlii82./d~. exp(--{1,-B,.)d<J;.,. 

UA1@A2(y)= uA,(~)·fAr -t UAlC~)·'PA2 

uA,IYl=1-{Ch-")/h\1n,t-l, UA~('})=1. (19) 

In Eqs.(18) and (19) pAl and pA2 represent the cumulative 

fracture probabilities up to Om=DO in the domains At and A2,r 

respectively. Thus, Eqs.(18) and (19) are of the so-called 

mixture type. Therefore we can separate the date of fracture 

location simply. In Eqs.(18), note that the relation between 

lnSAi(X) and ln(X/L) is linear. 

The solid lines in Figs.S(a) and (b) show the individual 

distribution functions of fracture location calculated from 

Eq.(18). It can be seen that they coincide fairly well with the 

experimental data points, expressed by the -t signs. Fig.6 shows 

the experimentally derived histogram relating to they-coordinate 

of the depth of fracture origin. 0 signs connected by solid 

lines represent the estimated results calculated from Eq.(19); 

these coincide satisfactorily with the experimental results. 

Distribution of Flaw Size 



18 

Suppose that the inner flaw which initiates fracture is a 

penny shaped crack parallel to y-z plane and that the following 

equation is valid, at fracture, for any crack size. 

K 1 c = ]:_ ()" JlCd/z ( 20) 
7[, 

where d is the diameter of the crack. Then we obtain 

hA 1 ( d I~) = b (K1c,lil)mld-(ml+2)/2 [ V lK1c,lii Lh }m1
1 m1 -- • • exp - eo --·--=-

12a 01 120o""1 x (h-y) lcf 
( 21 ) 

From this equation, we can calculate the probability density 

function of the crack size d as a marginal. 

Fig.7 shows the histogram of observed flaw size d. In this 

figure, o signs connected with solid lines represent the 

t h e ore t i c a 1 r e s u 1 t s ( K 1 C = 4 • 0 6 M P a \flii) ; t h e s e c o i n c i de p re c i s e 1 y 

with experimental results within the range of comparatively large 

crack size (40-85pm). 

Although the observed crack size at mode (about 35pm) 

coincides with that of the estimated one, the absolute value of 

percentage is different. It would appear that this diffence 

results from the assumption that K1c value is dependent of the 

crack size/mean grain size ratio. 

Recently it was found that the fracture toughness of 

ceramics decreases as the ratio of the crack size versus the mean 

grain-size does. Usami et al.[12] deduced the following equation 

to explain such phenomena. 

(1 + r 12 ae)' 12 

Kcl K,c= (1 + r I ae) (22) 

where K1c is the plane strain fracture toughness obtained from 

comparatively large cracks; Kc is an apparent fracture toughness 

for a small crack; r is the size of the weakest grain (which is 

taken to be twice the mean grain-size); 2Cte is a size of an 
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equivalent two-dimensional straight crack. Since we assumed that 

there are penny shaped cracks in a body, O..e in our case is given 

by 

O..e C: 0. 2dc 

Substituting Kc given by Eq.(22) into Klc in Eq.(21 ), we obtain 

the Joint probability density function under three-point 

bending load[13). 

Closed circles (0 signs) are the calculated results obtained 

from the above analysis, which coincide with the experimental 

results better than those of open circles (0 signs). However, 

the calculated results expressed by ! signs over-estimate the 

flaw-size in the region dc>SOpm. Therefore, from the view point 

of the structural reliability, the analysis using Klc is better 

than that using Eq.(22). 

2.3 Three variables 

In the theory explained in section 2.2, we supposed that the 

penny-shaped crack which might cause fracture should lie 

perpendicular to the maximum principal stress. However, the 

crack which may cause fracture does not always lie as thus. If 

we want to know the flaw-orientation distribution as well as 

those of fracture stress, flaw-size and flaw location, we have to 

adopt the multiaxial Weibull distribution function instead of 

uni-axial one. 

Let intoduce a random-variable vector as 

X = ((}lr\ I ~ 1 o( ) ( 23) 

then we obtain the three-variable joint probability density 
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function as [14). 

hAi (<J,._,) r\) oi.J..0J~ ~ =- e(p (-B..:ht)o'\ (4-.:)clcJ.JJ do?n 1 < 24 > 

Bi= fh ~<1-i-4-~ ~d-~3 I cr.:-:.~ (z~~~~)~Y(Z.,f'u.:)(#-)(~). 
where, the subscript t means the total domain of each variable; 

dA is a surface element of a unit sphere. In general, ~ is a 2-

dimensional vector which has two independent components related 

to the space angles, say Band~ (see Fig.8). 

Similar to Eq. ( 1 6), the joint probabi 1 i ty density function 

hA(6m,~,~) involving K causes of fracture can be formulated as 
I{ I< 

hAt6m,J ,(j.) =-'0" R..:. ~I A; I 
•-' rr-

Ri= 1- (ln )'!:" L hA< (<1.,., Y,ol.) dd--d~ ~0'7>1 
D }tCIIt 1 (25) 

,.:U = hA.; (f'm 1 ~ ,oO /~•.'1 
A= A, G'J A'2. £;qj ---{DAK. 

Equation (2~is valid for an arbitrary stress state and arbitrary 

types .of fracture origins. 

Using the general equation derived in the above, we analyse 

the 3-point bending test of a rectangular cross-sectioned ceramic 

specimen (see Fig.4). 

For simplicity, we suppose that there is only one type of 

fracture origin, namely, penny-shaped crack. For the first step, 

we employ the shear insensitive criteria as a mixed mode fracture 

criteria. 

In the analysis it is assumed that the crack plane is 

perpendicular to the thickness direction of a specimen. 

Therefore, ~=d;. 

The distribution function of flaw-orientation is obtained as 

the marginal with respect to flaw-orientation angle~ as 
2.,,+1 r 

HA 1( 4> = 1- COS ~ (26) 
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which leads to the following density function. 

hAl(~l"' (2m,-t 1) s~~. tco;;..,,p (27) 

Fig.9 shows the calculated flaw-orientation distribution 

function and the density function. From these figures we see 

that the flaw-orientation distribution shifts toward low angle 

and becomes sharp as m value increases. These mean that the 

smaller the scatterness of fracture strength becomes, the smaller 

the flaw-orientation angle does. It is without saying that the 

probability density function is strongly influenced by the 

fracture criteria[14). The analysis mentioned above, including 

those of the previous section , may play an important role on 

non-destructive inspection of ceramic component[15). 

3. Estimation of Webull Parameters 

One of the most important factors in statistical analysis 

using multimodal Weibull distribution may be the problem as to 

how accurately the parameters can be estimated, how accurate the 

parameters obtained are, and how many samples are necessary. The 

method for estimating Weibull parameters is outlined below. 

Multimodal-Weibull distribution containes a number of 

parameters (mi, ~i, ~i). It is known that although, by the 

nature of its mathematical structure, we can estimate parameters 

of multimodal-Weibull distribution by directly maximizing the 

likelihood function, its estimation accuracy is very low. 

However, its accuracy can be raised significantly by using 

fracture cause data [16). If parameters can be estimated with 

such high accuracy, the information thus obtained can be fed back 
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to material design. 

Multistep maximum-likelihood method 

According to competing risk theory, the likelihood function 

for data (complete data) on known strength and fracture causes, 

which are known to conform to the multimodal-Weibull 

distribution, is given by [16,17]: 
k ni 

L=Const. X n L1. L=[ n f 1(x 11)] 
i-1 i~l 

k nl 
[ n n R,!x,1)], 

1··1 j-1 ' 
1~1 

Ht=exp(-B;), ft=B/ exp(-B;) 

(28) 

where i: type of fracture cause, ni: number of test pieces 

f.ractured by f:ractur-e cause i and Xij (i=1 , .••. , k:j=1 , •••. , ni): 

strength data for jth of test pieces fractured by fracture causes 

i. Li in the above equation contains only single-distribution 

fi. Thus, a set of parameters which maximize Li is the maximum 

likelihood estimates. With Oui=O, each maximum 
n 111.,: 

equation is expressed by 'l'l .. : 2:: X; . .£,..,-x_,· 
(A-"' 11 ~~~ Yl d-1 

().: _ ("<._~_~.z:: :i ,mi) ~ + ~ .tn X! - Yl~ ..o..::-"-=p.....---..,-. .,.,....,..:. -
0'(,- \. 7'\4 ~~I ~ I 1'1\A. J=l Q -:? A.J 

likelihood 
tC! 

Tl:: ~ n..: 
-i""' 

} ( 29) 
f • _, 

Thus mi and 6ui can be obtained. This is called a multistep 

maximum-likelihood method. 

Ito et al.[11] conducted an HP-Si3N4 (3x3x28mm) 3-point 

bending test,as mentioned previously, producing the following 

:results: 326 inte:rnally f:ractured, 77 surface fractured and 12 

undetermined from total of 415 test pieces. Figure 10 shows the 

results of Weibull plotting of the above results[10] in 

accordance with fracture causes by using the Johnson method[18]. 

The solid line in the figure is a theoretical curve calculated by 

using parameter estimates (m1:15.79, 6o1=95.99, m2=12.73 and 



23 

6o2=129.5) obtained by the mu.l tistep maximum likelihood method. 

It agrees well with the values measured. 

In addition, with some unknown fracture cause data involved, 

the parameters can still be estimated with high accuracy by using 

the improved EM algorithm[16]. 

Relationship Between Distribution of Parameter Estimates and 
Number of Samples 

Let us write the maximum-likelihood estimates for parameters 

m and~ contained in multimodal Weibull distribution function as 

~ and 1• respectively. It is known that if the number n of 

samples is large, the distribution of ~/m conforms to a normal 

one with mean 1 and variance: 0.608/n. For example, with n=25 or 

50, the coefficient of variation for~ is as follows: 

Thus, 

n=25: COV=~Q;;) :::O,IS"t 

n=50 : cov={o.6o'8 = o,l/0 
S"o 

with the coefficient of variation 1\ for m necessary for 

designing given, the necessary number of samples can be 

determined. 

If the number of samples is sma 11, the distribution of 

estimates, both unimodal- and multimodal- Weibull distributions, 

can be known only by using Monte Carlo simulation. 

4. Conclusions 

The generallized multimodal Weibull function, which is a 

function of a random variable vector, was presented by combining 

the competing risk theory and fracture mechanics. Three special 

cases were shown; the first are the distribution functions of 
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fast-fracture strength, dynamic fatigue strength and cyclic 

fatigue life as the case which has only one random variable (one 

dimensional case); the second are those of fracture stress and 

fracture location or crack size at fracture origin as the case 

which has two random variables (two dimensional case); the third 

has three-random variables, namely, fracture strength, fracture 

location and flav1-orientation (three-dimensional case). The 

calculated results satisfactorily coincided with the experimental 

results carried out on HP-S~N~ by Ita et al .. 
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solid lines are the estimeted values calculated from Eg. 
(18) (HP-SiN [11]). 
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Histogram of the depth of inner fracture origin relating 
to the y-coordinate (HP-Si N [ 11], o signs are the 
calculated results from Eg.(19). 
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Eistogram of flaw-size for 3-point bending 
[11] (o signs: Kc=K1c, o signs: Eq.(22)). 
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Fig.10 Weibull plots of the fracture stress o max (HP-SiN [11]) 
according to Johnson method[18]. The solid lines are the 
calculated results using competing risk theory. oc is a 
corrected fracture stress at fracture origin, which can 
be estimated from Eq.(16). 
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Table 1. Weibull parameters estimated by the multi-maximum 
likelihood method (M-MLE). 

--------------
,.. ,. 
m· O"Qj I 

Inner fracture 
( i:: 1 ) 15.79 959.9 

Surface fracture 
( i=2) 12.73 1295 




