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1. Theoretical background 

1.1 Viscosity theory 

About three centuries have passed after Newton1>, in his famous "PRINCIPIA", has 
defined viscosity. It has been about 150 years since Hagen2> and Poiseuille3> have 
discovered independently the (capillary) method of determining the viscosity. Before their 

discovery, the viscosity was merely a definition of the fluid property and the difference 
between Newtonian and non-Newtonian viscosity was not known. Mter the measurement 
of viscosity became possible, the exsistence of fluids the flow property of which was not 
conforming to the NeWton's flow equation (1) became to be known . 

. • • • • • . . . • • . • • • . • • • • • • • • • • • • • • • • • • • • ( 1) 
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Currently, three types of flow as illustrated in FIG. 1 are known. The line A in FIG. 1 
describes the Newtonian flow the shear stress of which is proportional to the shear rate. 

Curve~ Band C describe the non-Newtonian flow. Curve B is frequently observable for 
suspensions such as cement pastes and other mixtures of solid particles and liquids, and 
curvre C for polymer solutions such as multi grade engine oils. Although the curve B is 
shown for representing the non-Newtonian flow of a suspension, the shape of which varies 

widely according to the conditions of experiment to draw a flow curve as shown in FIG. 2. 

Due to variation of the shape of flow curves, it is meaningless to classify non-N ewtonian 
fluids as substances by the shape although it is not meaningless to classify the flow 
phenomena. There are non-Newtonian flow equations proposed by Bingham•· 6>, Harschel 
and Bulkleya.n, and by Casson8

> but none of the non-Newtonian curves in FIGs. 1 and 2 are 

expressible by these equations. 
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FIGURE 1. Three Types of Flow 

r 

FIGURE 2. Variation of Flow Curve of Suspension 

The reason why these equations are not capable of expressing the popularly known 

non-Newtonia,n flow curves may be attributable to the fact that non-Newtonian viscosity in 
these equations has not been properly defined. The term "apparent viscosity" have been 
used to discriminate non-Newtonian viscosity from Newtonian viscosity without an 
interpretation on the mechanism of resistance against the flow. 

As another approach to establish a non-Newtonian viscosity theory, modifications of 
the famous Einstein equation (2)9

•
101 have been tried frequently. 
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n 1 number ofliquid molecules in unit volume 
n 1 number of primary particles in unit volume 
n 8 number of primary particles in unit volume 
U = J In, J : number of junctions between constituents 

It is generally known that liquid molecules are in random thermal motion and not all of 
them are making contact with each other, but due to the huge number (1018 

-
18) in unit 

volume and to the very rapid motion, the variation in number of friction points or of 
junctions is not observable. 

If we assume that the total surface area of particles is constant regardless of the state of 
coagulation of particles, the number of friction points between particles and liquid 
molecules is considered constant, an~ by the above explained reasons, we may assume that 
U1 and U2 are constant (equal to 1). The constant viscosity of a Newtonian liquid or of a 

suspension in the state of complete dispersion is thus explainable by the constancy of 
number of junctions. 

Due to the large mass and to the large quantity of motion of particles in suspension, the 
velocity of motion is much slower and the frequency of collision is much lower as compared 
to those of the liquid molecules, and the variation of number of junctions between particles 
is observable. The variable (non-Newtonian) viscosity is explainable by the variation of 
number of junctions. 

The expression of eq. (4) seems more reasonable than that of eq. (2) since it contains the 
terms describing both the properties of liquid (B1) and the particle (B1). As is well known, 
Einstein, when he proposed eq. (2)9

•
10

,, considered a system of complete dispersion (without 
an interaction between particles). If a suspension is in the state of complete dispersion, 
then there is no point of friction between particles (U8 = 0), and eq. (4) expresses the 
constsnt (Newtonian) viscosity. 

There is a problem when one tries to use Einstein equation (or eq. (4) without the third 
term in the right side) because it is very difficult (practically impossible in some cases) to 
confirm that the sample suspension is in the state of complete dispersion. Without this 
confirmation, there is no reason to justify the application of Einstein equation to a 

suspension. 

It is also well known that the difference bretween calculated viscosities by eq. (2) and 
measured viscosities becomes larger for the suspensions of higher particle concentrations. 
This seems very natural because Einstein equation neglects the particle-particle 
interaction the probability of which increases as the particles concentration increases. 

As eq. (3) was extended to express both the Newtonian and non-Newtonian viscosities, 
Newton's flow equation (1) was extended to express both the N ewtonian and 
non-N ewtonian flow curves (eq. (5)) correspondingly. 

't = rz • r = T·{Bl· (nl·US113 + B2· (n2·U2rua + Ba· (na·Ua)218
} , 

• : • ••••••••••••••••••••••••••••••••••••••••••••••• ( 5) 
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....................•....... (2) 

1Z, viscosity of suspension 
1Z, viscosity of medium 
Cv volume concentration (fraction) of particle 

Although over hundred modifications of eq. (2) have been proposed11 _ 13,, this approach 

has not been successful and the reason of this may be attributable to the problems associated 
with the original equation. Since eq. (2) does neither contain the terms describing the 

time-dependency and the shear-dependency of viscosity nor the term for representing the 
specific property of particles, this equation is considered to be not suitable as a fundamental 
equation describing the non-Newtonian viscosity. 

Other than the approaches mentioned as above, there have been work.s14 - !18l in efforts to 

establish non-N ewtonian viscosity equation based on the destruction of coagulated 

structure or the decreasing number of junctions between particles. One of the serious 
problems associated with this approach may be a lack of an appropriate consideration on the 
increasing number of junctions between particles caused by the naturally ocurring 
coagulation. 

As a solution for the lack of proper terms or the def:mition of non-Newtonian viscosity, 
the authors30 

- a7l considered an application of classical concept in which the viscosity was 
attributed to the friction between the constituents of a fluid. By introducing the concept of 
friction, the viscosity (IZ) of a N ewtonian liquid is expressed as follows; 

....................................... (3) 

B coefficient of friction as expressed in units of dyn·sec 
between two liquid molecules 

n number ofliquid molecules in unit volume 

If we apply the same concept of friction to a suspension consisting of a kind of particle 
and a liquid, and introducing the term U which denotes the ratio between the number of 
friction points or the number of junctions J and the number of conponents n, eq. (3) is 
extended to express the viscosity of a mixture as follows; 

1Z, = IZ1 + IZ2 + 'Za 
= B1· (nl-Ul)213 + B2· (n2·U2)213 + B3• (n3·U3)

213 ........ (4) 

1Z1 viscosity originating from friction between liquid molecules 
1Z2 viscosity originating from friction between particles and 

liquid moleclues 
'la viscosity originating from friction between particles 

B1 coefficient offriction between two liquid molecules 
B2 coefficient offriction between a particle and all liquid 

molecules surrounding it 
B3 coefficient offriction between two particles 
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1.2 States of dispersion and coagulation 

As U3 is an only variable in the right side of eq. (4), an equation describing a varying 

viscosity of a suspension is considered to be obtainable if the practical form of equation 
expressing U3 is known. For obtaining the equation expressing the variation of number of 

junctions, the authors considered an application of the coagulation rate theory established 
by Verwey and Overbeek331• Since the chain structure of coagulated particles is assumed in 

the Verwey-Qverbeek theory, the authors examined the pertinence of applying this theory 
to the concept of junction viscosity. When the chain structure of coagulation is assumed, all 
the particles in the system has to form a chain at the state of complete coagulation 
theoretically, and the resulting system may not be homogeneous. This may restrict an 
applicability of the author's theory. of junction viscosity to an exsisting system since the 
homogeniety to a certain extent (at least macroscopically) is necessary for claiming that the 

viscosity calculated based on the theory represents the viscosity of the whole system. 
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FIGURE 3. States of Dispersion and Coagulation 

A system containing a chain of particles is evidently unhomogeneous and the viscosities 

of parts with and without the chain are entirely different, but considering the process of 
coagulation starting from the completely dispersed state, it is possible to assume that the 
coagulation progresses from A to D as shown in FIG. 3. Since 108 

- 1012 particles are 
contained in a concentrated suspension, 107 

- 1010 coagulated particles (n,) are present in 
unit volume at 99 % coagulation if we define the degrees of dispersion (Dd) and of 
coagulation (Dei as follows; 

Dd = n,/n3 } 

De = 1 - Dd 
••••••••.•••••••••••••••••••••••. ·(6) 

Even at 99.9 % coagulation, there still are 108 - 109 coagulated particles and this 
particle number is considered to be large enough to ensure the homogeniety of a sample 
suspension subjected to rheological measurements. Based on the reasons mentioned as 
above, the authors judged that the coagulation rate theory and the junction viscosity theory 
assuming the chain structure of coagulation are applicable for the calculations of junction 
number and the viscosity of concentrated suspensions. 
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2. Derivation of viscosity equations 

2.1 Equations for the calculation of junction number 

According to Verwey-Qverbeek theory31il, the interaction potential energy of charged 

particles in a suspension is expressed as follows; 

_ e·cp2~r "KD A{ 2 2 (82
- 4)} 

- 2 ·ln (1 + e ) _ 6 SI + (S2 _ 4) + ln 82 
•••••••••••••••••••••••••••••••••••••• (7) 

S == 2 + D/r 

where, 
V Interaction potential energy 
V R Repulsive potential energy 
V A Attractive potential energy 
r Radius of particle 
e Dielectric constant of medium 
cp Surface charge of particles 
D Surface-surface distance between particles 
A Hamaker's attraction constant 
" Debye-Hiickel parameter 

_ ..j 8·n·N·I E 
" - lOOO·e·k·T . 

From the same theory, the rate of coagulation or the decreasing number of particles is 
expressed as follows; 

•••••••••••••••••••••• (8) 

V max : Maximum interaction potential energy 
n 3 : Primary particle number 
n, : Particle number at a given time t 
K : Smoluchowski's rapid coagulation rate constant 

K == 4-k·T 13·rzm 
'lm : Viscosity of medium 
k : Boltzmann constant 
T : Temperature in oK 
E : Unitcharge 
N : Avogadro number 
I : Ion concentration, Nil 

Eq. (8) integrates to, 

..!, _ _1_ = 2·K·"·r·t/eV,....tkT 
n, n3 

al_ldfrom eq. (9), we have, 

•••••••••••••••••••••••• (9) 
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••••••••••••••••••••••••••••••••••••••• (10) 

bywriting P = 2·K·IC·r·n8, and x = V,_lkT. 

Since the number of junctions at a given time J, for the chain structure is, 

J, = n 3 - n1 •••••••••••••••••••••••••••••••••••• (11) 

we have, 

J,= or ~ = Ua = Pt 
lla Pt+ex 

•••••••.• (12) 

Eq. (12) is further simplified by writing H = P /ex as follows; 

••••••..••..••••••.•••.•..•• (13) 

As U8 is equal to 1/2 at the halflife time of the particle number tH, 

HtH - 1 ••••••••••••••••• (14) 
HtH + 1-2 

From eq.(14), we may name H the coagulation rate constant because its physical 

dimension is ['r-1
] which is the same as those of many rate constants. It is the only 

parameter expressing the rate of coagulation in eq. (13) and in the viscosity equations in 

the present theory which will be shown later. 

For the cement paste of any water/cement ratio R, the volume fraction of particle Cv is 
calculable as follows; 

•••••••••••••••••••••••••••••• (15) 

where p 1 is the specific gravity of the medium and p 2 is that of the particle. The 
(average) radius of particle r is calculable from the specific surface o as follows; 

••••••••••••••••••••••••••••••••••••••• .-(16) 

and from R and Cv, the primary particle number n 8 is calculable as follows. 

3·Cv 
na= ~ ••••••••••••••••••••••••••••••••••• ·(17) 

As described previously, the coagulation rate constant H is equal to P le"' having the 
dimension [T"1]. If we analyze the dimensions of parameters in eq. (8)- (13), we would find 
that H, P, and X contain the values having the dimension corresponding to the unit erg/erg 

which may be called a dimensionless energy. In unagitated suspensions, the particles tend 
to coagulate to reduce the internal energy expressed by P in the dimensionless form. If 
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the repulsive potential energy V 8 is large, it reduces the rate of coagulation by making the 

value ofdimensionless energy Pie% or H small. 

It seems reasonable to consider that low (dimensionless) energy states of dispersion 

correspond to high viscosity and high energy states to low viscosity. This consideration fits 

well with the viscosity decrease of agitated suspensions because the energy in suspensions 

increases with mechanical agitation. 

The expression of dimensionless energy for representing the shear rate is directly 
obtainable from the dimensional analysis of Newton's flow equation (1) as follows; 

r = 1: (dyn/cm2) 
1Z (dyn·sec I cm2) 

= -.: (dyn·cmlcms) 
1Z (dyn·cm·sec/ ems) 

= ---,•,:....(:.:.e;;.org"'-) ~ 
1Z (erg·sec) 

•••••••••••••••••••••••••••••••••••• (18) 

The same expression is obtainable by denoting the total mechanical energy ( of 

agitation) Em put into the system (of viscosity measurement) during the period of time t 

and dividing it by kT to be the same as the expressions for energy in the coagulation rate 

theory. 

or rt = Em 
kT 

• •••••••••••••••••••••• (19) 

As far as the authors could find in the literature, the same expression (rt) was first used 
by Tattersall39

•
401for describing the decreasing viscosity of cement pastes. But 

unfortunately, his paper with its excellent suggestion has not attracted much attention from 
rheologists. 

As the state of dispersion is described by the relationship between the potential energy 
and the relative distance between particles by eq. (7), it may be considered that the 
coagulation progresses by consuming the internal energy corresponding to Ht as expressed 
by eq. (13). To satisfy the law of conservation of energy and to maintain the relationship 
between the internal energy and the state of dispersion, the original state before consuming 
the internal energy corresponding to H ·t must be recovered if the same amount of energy 

r·t' ( = H ·t) is supplied to the system from outside. For this reason, the expression for the 
influence of energy of agitation on the particle number is obtainable by back-tracing the 
curve expressed by eqs. (8) or (13). 

For back-tracing the curve expressed by eq. (13), the relationship between the internal 
energy consumption and the external energy to recover the original state (H ·t = r·t') 
must be modified as follows; 

H·t = 1/r·t (H = 1/r·t2) 
•••••••••••••••••••••••••••••. (20) 

By reversing the time axis and by introducing the relationship of eq. (20) into eq. (8), we 
have, 
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..::at= ns·;·t2 

which integrates to, 
- na'T't 

~- r·t + 1 
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....••.•.••.•••••••.•••••••••••• ·(21) 

.•••.••••.••••••••••••••••• •(22) 

for the initial conditions t = "' and n, = n 3• From eq. (22), we have the following (23) 
for expressing the influence of agitation in promoting the dispersion. 

J = na 
' r·t + 1 

or J, = u = 1 
n 3 r·t + 1 

•••••••.••••••.••••••••••.••••••. (23) 

Although eq. (23) expresses the rate of mechanical dissociation of the coagulated 
particles, it is not useful for the calculation of decreasing viscosity of actual suspension 

because the parameter r only desacribes the mechanical dis:&oeiation rate. In the 
suspensions under the influence of the coagulation rate. H. the natural coagulation of 
particles always progresses until the complete coagulation is reached, so, it is always 
necessary to have the parameter H in the equations to calculate the time-dependent 
viscosity. 

2.2 Equations for the calculation of viscosity 

For the suspensions, two initial states, the initially dispersed state and the initially 
coagulated state may be defined. For an initially dispersed suspension left unagitated, the 
coagulation progresses and the junction number increases according to eq. (12) or (13). If 

all the particles in suspension are completely dispersed, there is no junction to be destroyed 
by the agitation, but considering the process of preparing a suspension, the probability of 
finding or observing the completely dispersed state seems very low. 

In many cases, the suspensions are prepared by mixing the particles (or powders) and 
the medium, and the particles before adding the medium is considered to be forming a 

coagulated structure ofthe higher order, in which the number of junctions is larger than the 
number of particles forming a simple chain. By the mixing at the preparation of 
suspension, the number of junction decreases to less than the number of particles, but as 
shown by eq. (23), it is not possible to attain the state of complete dispersion since it is not 

possible to make r or t infinitively large. For this reason, suspension samples are not 
usually in the state of complete coagulation nor in that of the complete dispersion at the 

begining of viscosity measurements. 

Although the states of complete dispersion or complete coagulation is not practically 
observable, we may define the theoretical time axis in which the suspensions initially have 
to be either in the state of complete coagulation in which J, is equal to n 3 and n, is equal to 

0 or in the state of complete dispersion (J, = 0, n, = n 3). 
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For the chain structure of coagulation of particles, the following relationship between 
the particle number and the junction number is satisfied. 

Jo +no= na, 
Jt + nt = na, 
J$ +nE::::: na, 

Uo = J 0 /n3 (=D. at t= 0) 
Ua = Jt /na 
UE = JE/n3 (=D. at t = tE) 

J 0 ; Junction number at the start of observation (experiments). 
Jt ; Junction number at the experimental timet. 
J E Junction number at the time of equilibrium (explained later). 

no Particle number at the start of observation (experiments). 
nt j Particle number at the experimental timet. 
nE ; Particle number at the time of equilibrium (explained later). 

Since theoretical initial conditions of suspensions are not usually observable, it is 

important to note that almost all experimental data are described or illustrated on the 
experimental time axsis. The following FIG. 4 illustrates the difference between the 

theoretical time and the experimental time in which the observable viscosity changes are 
shown by solid lines. 
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FIGURE 4. DEFINITION of TIME AXSIS 

For the no particles, the coagulation progresses at the rate of Ht/ (Ht + 1), but by the 
agitation (of rotor of the viscometer used for the measurement), the rate is reduced by the 
ratio corresponding to 1 I (rt + 1). Consequently, the number of junction J 1 for n 0 particles 
at the time t is; 
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J-1-
(Ht + 1) (rt + 1) 

••••••••••••••••••••••••• ·(24) 

For the J 0 junctions, the dissociation progresses at the rate 1 I (rt + 1), and for the 

released particles by the dissociation 1 - (1 I (rt + 1)), the coagulation p rogresses at 
the rate Htl (Ht + 1). So the junction number J2 originating from J0 junctions at 

the time t is, 

J J Jo·r·Ht2 

2= 0 + 
rt + 1 (Ht + 1) (rt + 1) 

•••••••••••••••••• ·(25) 

Since the junction number at the time t is the sum of J 1 and J2, 

n.·Ht 
(Ht + 1) (rt + 1) 

_ J 0·(rHt2 + 1) + n 3·Ht _ n . U 0·(rHt2 + 1) + Ht 
- (Ht + 1)(rt + 1) - 3 (Ht + 1)(rt + 1) 

..•.•.•..•.•••••..••..•••....•...• "(26) 

By substituting the initial condition for the initially coagulated suspension (U0 = 1) 
into eq. (26), we have, 

•••••..•••••••• ·(27) 

and for the initially dispersed suspension (U 0 = 0), we have, 

J -1-
n,-Ht ..........••.......•.•.... ·(28) 

(Ht + 1) (rt + 1) 

As the coagulation progresses, the number of isolated particles diminishes reducing the 
probability of collision between particles. As the dissociation of coagulated particles 
progresses, the rate of coagulation increases due to the increased number of particles and to 

the increased probability of collision. For this reason, there exists a time of equilibrium tE 
at which the rates of coagulation and of mechanical dissociation become equal. Mter the 
time of equilibrium, the number of junctions remains constant. The time of equilibrium is 
calculable from the condition to make the derivatives of eqs. (26) - (28) equal to zero. 

The derivative ofeq. (26) is, 

dJt = n . [ (rHt2 -1){Uo·(r + H) - H}~ 
dt 3 (Ht + 1)2 (rt + 1)2 

••••••••••••••• (29) 

ofeq. (27) is, 

dJt _ n,·r·(rHt2 -1) 
dt - (Ht + 1)2 <rt + 1)2 

••••••••••••••.•••••••• (30) 



and of eq. (28) is, 

dJt­
dt -

-n.·H·(rHt2 -1) 
(Ht + 1)2 (rt + 1)2 

and the time of equilibrium is, 
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.••••••••••.••..••• (31) 

t2 = _1_ 
E r·H 

or t - __]__ 
E- -~ vr·H 

•••••••.••••••• (32) 

As the equations (27) and (28) were obtained by substituting the initial conditions into 

eq. (26), the experimental time and the theoretical time are the same for eqs. (27), (28), (30), 

and (31). As (rHt2
) is always smaller than 1 initially (because t = 0), dJ,Idt is initially 

negative by eq. (30), and by eq. (27),. the viscosity decreases uritil the equilibrium between 

the coagulation rate and the mechanical dissociation rate is reached. For the same reason, 

the viscosity increases by eq. (28) until the equilibrium is reached. 

The initial increase or the decrease of viscosity by the general viscosity equation (26) 
depends on both (rHt2) and Hl(r + H). When Uo is larger than Hl(r + H), the viscosity 

initially decreases since (rHt2
) is usually very small when t is nearly 0. The viscosity in 

this case decreases until the the time of equilibrium and remains constant afterwards. If 

U0 is smaller than Hl(r + H), the viscosity increases until the equilibrium is reached. 

The number of junctions J E at the time of equilibrium is calculable by substituting tE 

into eqs. (26) - (28), and correspondingly we have, 

J = ·{2·~ + H} 
E I1a ( H + "\IT)2 .••.....•..•••••••••.•.•• ·(33) 

••••••••••••••••••••••••• (34) 

•••••••••••••••••••••••••••••••••• (35) 

Mter obtaining the equations for the calculation of junction numbers J 1 and J E• the 
viscosity of a suspension originating from the particle-particle friction becomes calculable 
as follows based on eq. (4). 

. .......•....•........•....•...... ·(36) 
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3. Calculations of viscosity 

3.1 Equations expressing shear rates 

As described previously, the viscosity originating from the particle-particle fciction is 

expressed by eq. (26) which contain parameters B3, n3, H, r, and U0• Among these 
parameters, the method of calculation of n3 was already shown by eqs. (15) - (17). Since 

the shear rate is an artificially subjective condition decided by the person who conducts the 
rheological experiments, any equation such as the following describing the time-shear rate 
relationship may be written. 

r=G 

Y1 = G1 
T2 = G2 
Ta = Ga 

• •••••••••••••••••••••.••••••••••• (37.1) 

} ....•....•..•.... · ...•.••••.••..•.. (37.2) 

r == G·t ...................•......•..•.. (37.3) 
r == G·t'l ...••.•••.•.••••••••••••••..•••• (37.4) 
r == G·(T - t) ••••••••••••••••••••••••••••• (37.5) 
r = G·(T- t)a •••••••••••••••.••••••••••••• (37.6) 
r = G·sin(cut + a) .......................... (37.7) 
r == logG·t ............ -~ ................... (37.8) 
r = G·eat .......•..••.•.••...•••........ (37.9) 

G, a, cu : dimensionless constants 

Note : Eqs. (37.1)- (37.9) merely express the numerical 
relationship between the time and the shear rate. The dimensions 
of both sides of all equations are ['f"1

). 

Eq. (37.1) describe the constant shear rate and (37.2) the stepwise change of shear rate. 
These equations are not useful for the calculation of flow curves and hysteresis loops 
although the conditions described by these equations are most frequently encountered in 
experiments and in industrial practices of handling the suspensions. 

Eqs. (37.3) - (37.9) describes the continuous change of shear rate. Among the 
conditions described by eqs. (37.3) - (37.9), the linear change of shear rate (37.3) is 
considered to have been most frequently employed to draw flow curves although the 

influence of shear rate on the shear stress has not been known quantitatively. The authors 
have not seen a case in which the conditions described by eqs. (37.4) - (37.9) have been 
employed in the papers presented in the past to calculate the flow curves. Eq. (37.4) is 

considered to be useful in t):le investigation and the estimation of starting torque of agitators 
and (37.5) is necessary for the calculation of down curves of hysteresis loops. Other 

equations may be found to be of some practical use in future, but currently, these are 
practically useless. 
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3.2 Viscosity under constsnt shear rate 

After defining the shearing (experimental) condition, the viscosity 1la is calculable by 

eqs. (26) - (28) although B3, H, and U0 have to be known. Before showing the methods of 
calculation of these parameters, the viscosities of agitated and unagitated suspensions for 

the given values of; 

r = 3pm 
n8 = 9 X 109 

B3 = 6 X 10-11 

were calculated to illustrate influences of the shear rate rand the coagulation rate H,. 

H = 1.0000 X 10-s 

2000 

1000 

H = 2.4787 X 10-s 

0 4000 8000 
Time (sec.) 

FIGURE 5. Time- Dependent Viscosity of 
Unagitated Suspension <r = 0)41

, 

10-4 

Although the suspensions are not usually in the state of complete dispersion nor in that 
of the complete coagulation as mentioned previously, it is possible to assume that the same 
shear rate is main teind all through the viscosity measurement (from the theoretical t = 0) 
if the constant shear rate (including r = O) is being employed. This assumption of 
constant shaer rate (including the periods before the observation) is important for the 
calculations of specific constants (B3, H, and U0) of each suspension sample and for the 
conversion of time axes (theoretical and experimental) which will be described later. 
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FIGURE 6. Time- Dependent Viscosity of 
Agitated Suspension <r = 100 sec·1
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FIGURE 7. Time- Dependent Viscosity of 
Agitated Suspension (H = 10-a sec"1

)
4u 

As shown by the FIG. 5, the viscosity of unagitated suspension is influenced by the 
coagulation rate constant H which may be modified by the addition of dispersant or 

coagulant. The coagulation rate is also modified by changing the viscosity of the medium 
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because H is equal to (2·K·~e·r·n3 I ex) and K (Smoluchowski's rapid coagulation rate 
constant) is inversely proportional to l'lm (refer to page 6). 

In FIG. 6, a so called shear thinning effect which has been explained by the destruction 
of coagulated structure of particles in the structural viscosity theory14

-
29

> appeared very 

clearly. Although the viscosity increase of an unagitated suspension and the viscosity 
decrease by the agitation have been popularly known as phenomena, there has been no 
reliable theory explaining the relationship between the changing viscosity and the values of 
H and r, but by FIGs. 5 - 7 which were illustrations of results of calculations by the 

equqtions in the present theory, the increase or the decrease of viscosities of suspensions 
were described quantitatively without causing a conflict with the existing theories of 
stractural viscosity. 

In addition to the capability of explaining the viscosity change, constant viscosities of 
agitated suspensions are explainable by the present theory by way of the exsistence of 

equilibrium between the coagulation rate (H) and.the dissociation rate (r) of particles. By 
introducing the concept of equilibrium, the reason why many people have been finding 
constant viscosities of suspensions in the experiments for modifying Einstein's equation9 -la> 

became explainable. 

3.3 Viscosity of unagitated suspensions and the calculation of B3 and H 

For the calculations of time-dependent viscosities and ofnon-Newtonian flow curves, 

values of specific constants B3, H, and U0 have to be known. Other parameters and 
conditions such as the primary particle number n 3 , the shearing conditions, 
concentration(s) of dispersant and other auxiliary constituent(s), and the kinds of media are 
also important, but these are artificially decided. 

Although it seems theoretically possible to calculate the coagulation rate constant H 
from eqs.(7) - (17), the calculated values may not be reliable since it is practically 
impossible to determine the X value (or VmaxlkT) for the samples of high particle 
concentrations. The x value calculated from eq. (7) by replacing <I> by ~-potential actually 
determined for the suspension of low particle concentration may not be reliable for 
describing the property of a thick suspension. 

Since it is possible to determine the viscosities of suspensions of various particles 
concentrations, it seems desirable, if possible, to find the values of specific constants from 
the actually measured viscosities. 

In the present theory, there are several ways of determining the parameters B3, H, and 
U0 from the measured viscosities. Among the methods, there are practical ones which use 
the viscosity of suspensions left unagitated and another based on the viscosity under a 
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continuous agitation. 
described in this section. 

The one which uses the viscosity of unagitated suspension is 

It is possible to calculate B3 and H from two data points of measured viscosity of a 

suspension if U0 value is known, but due to the unavailability of this value and to a 

relatively low reliability of each single measurement, an application of regression technique 
was considered desirable. 

~ 

. 
• .. . 

• 

+--

. . . ... 

At-+ 
t 

at' 
m e 

Theoretical 'la 

Experimental curve 

• Actual measurements 

ti 

FIGURE 8. Difference between Experimental 
and TheQreticaJ Curves 

t· ';] 

For the unagitated condition, the shear rate has to be zero and by assuming that the 
sample suspension was in the state of complete dispenion (Uil = 0) initially, eq. (26) reduces 
to; 

1Z u = B u. ns-Ht 
8 8 Ht + 1 

•••••••••••••••• ·(38) 

For the convenience of employing the technique of linear regression, eq. (38) is 
transformed as follows; 

1 = 1 + __ 1 __ _ 
TZ/5 Bl5·na·Ht Bl5·na 

••.•.••.••...• ·(39) 

By the use of auxiliary constants £and F where, 

eq.(39) is furhter transformed as follows; 

Y = E·X + F •..........•....••.......••••.. (40) 

Mter obtaining eq.(40) in which X = 1 /t and Y = 11TZ/·5, the technique of linear 
regression becomes applicable. Before the regression calculation, it is recommendable to 
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plot the viscosity data by setting the origin (t = 0) at the time of first viscosity 
measurement, and to estimate the value for ~t' by the extrapolation as shown in FIG. 8 by 
the arrow mark. The estimated value of ~t' is used for the first calculation. Although it 

is desirable to estimate the true value of ~t. it is not possible since there is no way offmding 
the exact value of ~77, beforehand. It is usually recommendable to use the value equal to 1.3 

- 2.0 times the viscosity of medium as ~77, depending on the particle concentration. 

Since there is an unavoidable difference between the measured data and the theoretical 

curve as mentioned previously, the corrections for ~t and ~Tl are usually required, although 

the correction for ~rz may be omitted when the lowest measured viscosity is very . high 
(higher than a few hundred times the viscosity of medium). The equations for the 

corrections of ~t and ~T/. are as follows; 

•••••••••••••••••••••••••••••• (41) 

•..•••••••••••••••••••••••• (42) 

The measurements of viscosity for the caluculations ofB3 and H have to be done quickly, 
applying the slowest shear rate possible to minimize the mechanical energy put into the 
system, since, as defined, eqs. (38), and (39) express the viscosity ofunagitated suspensions. 
A longer time of rotor rotation and a faster shear rate than necessary tend to increase 
theoretical error and to reduce the reliability of calculated results. 

After calculating the values for Xis and Yis, the constants E and Fare calculable as 
follows; 

:EYi = E-:EXi + m·F } 

:EXr Yi = f·:EXi2 + F·:EXi 

m: number of data pairs (Xi, Yv 
By solving eq. (43), we have, 

f = (:EXr:EYi -m·:EXrYi)/A0 

F = (:EXr:EXr Yi - :EXt :E Yi) I Ao 

where, 

...•••..••....•... ·(43) 

•••••••••••••• (44) 

••••••••••••••.•• (45) 

•••.••..•••...••.•••••••• (46) 

The coefficient of correlation R is, 

R = m·:EXtY; - :EXt:EY; 
v'{(:EXi)2

- m·:EXn{(:EYi)2
- m·:EYl} 

••••...• ·(47) 

If a very smooth curve is obtained by connecting the data points, a very high coefficient 
of correlation, equal to or higher than 0.99, is usually obtainable, and when the coefficient is 
very close to 1.0, the data used for the calculation are considered to be mathematically 
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reliable, although there are causes which may make the difference between the theoretical 
value and the experimental value larger without degrading the coefficient. 

There is a possibility of improving the coefficient of correlation further by adjusting the 

value for ~t. After maximizing the coefficient R by adjusting ~t. the values for B8 and H 
are calculable from E and F as follows; 

H =FIE 
B8 = 1/ (f·n:J213 

•••••••••••••••••••••••••••••••••• (48) 
•••••••••••••••••••••••••••• (49) 

Not only by adjusting ~t. it is also possible to improve the coefficient of correlation by 

adjusting ~rz. but the effect of ~Tf. correction is usually smaller than that of ~t and is nearly 
negligible for the samples of very high viscosity because the ratio ~rz/'Zs is very low. For 

this reason, it is not easy to find an accurate value of ~TZ- FIGs. 9 and 10 and TABLEs 1 
and 2 show examples of calculation of specific constants Ba and H for colloid cement pastes. 

rz, cP 

2,000 

1,000 

} Calculated 

60 

T i m e (min.) 

FIGURE 9. Calculation of 83 and H from 
Viscosity of Unagitated Cement Pastes 

The constsnts and parameters of the paste used for the tests in FIG. 9 and TABLE 1 are 
as follows; 

r : 1.465 pm (average radius of cement particle) 
n 8 : 1.893 X 1010/cm8 (primary particle number) 
Cv : 0.241 (volume fraction of cement) 
p : 3.15 (specific gravity of cement) 
K : 2.02 X 107 (Debye-HOckelparameter) 
I : 0.37 NIL (ionic strength) 
kT : 4.045 X 10"14 (at293.K) 
'Zm : 1.0 cP (viscosity of water) 
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TABLE 1 83 and H Values Calculated with the Corrections 

Sample A B c D E 
Dosage* 0.0 0.4 0.6 0.8 1.0 

% 16.34 16.66 17.92. 18.56 19.50 
H X 1<J5 4.857 3.498 1.000 0.524 0.205 
B3 X 10° 6.406 6.008 6.644 6.378 6.663 
At, sec. 685 256 320 330 255 
Arz, cP - - - - -

* Dosage of dispersant (formaldehyde high condensate ofN a P- naphthalene 
sulfonate),% by wt. of cement as solid. 

20,000 

10,000 

60 

T m e (min.) 

FIGURE 10. Calculation of 83 and H from 
Viscosity of Unagitated Cement Pastes 

• 

c 

F 
1.2. 

20.44 
0.081. 
6.581 
318.5 
1.56 

The constsnts and parameters of the paste used for the tests in FIG. 10 and TABLE 2 
are; 

0 : 6400cm2/g (specific surface of cement) 
r : 1.552 Jlm 
p : 3.15 (specific gravity of cement) 

W/C 0.6, 0.7, 0.8 
Cu : 0.3556, 0.32113 0.29274 
n, : 2.271 2.0508 1.8695 (X 101~ 



33 

TAB LE 2. Specific Constants of Colloid Cement 

A B c D E 

W/C 0.6 0.7 0.8 

Disp.* 0.25 0.40 0.25 0.40 0.25 

Time (min.) Viscosity (cP) 

0 3000 2250 750 575 600 
15 7000 2800 2750 1525 1640 
30 10150 4600 3250 2200 2560 
45 12650 6200 5750 3000 3650 
60 18000 8200 8000 4650 5250 
90 24500 13500 11250 6000 7200 

120 26000 17200 13750 9700 9500 
150 18300 11200 
180 23000 13000 

B8 X 104 7.955 8.049 8.409 8.885 16.760 
H X 106 10.080 2.801 2.760 1.159 0.5633 

t!.t 
R** 0.9994 0.9554 0.9990 0.9983 0.9986 

(sec.) 318.6 668.0 148.6 217.3 202.3 

* Dosage of dispersant (JJ'- NS), % by wt. of Cement as solid. 
** Coefficient of correlation 

Mter Hand t!.t are calculated, U0 becomes calculable as follows; 

F 

0.40 

475 
730 

1250 
1890 
2200 
3600 
5200 
6600 
7200 

8.157 
0.5143 
0.9768 
439.3 

U0 = H·t!.t/(H·M + 1) .•••••••••..••...••••..•. (50) 

As explained previously, it is important to minimize the energy of agitation put into the 

system of viscosity measurements for improving the reliability of calculated results. Other 

than the energy of agitation, quick response of a viscometer in indicating correct values of 

viscosity is very important since the time lag between the instant of starting rotor rotation 

and the time at which the reading on the indicator reaches the maximum causes an error in 

the time-viscosity record of the measurements. 

The viscosity ofunagitated suspension increases continuo!lsly as shown by A in FIG. 11, 

but it turns to decrease at the time when the rotor rotation is started as shown by the broken 
line B. Due to the influence of inertia of the rotor and of the sample fluid, it takes a while 

for the rotor to move at a predetermined speed (shear rate). The reading of viscometer 

continuously increases as shown by the arrows on the curves but the true viscosity decreases 

during this period. 

As described in this section, the specific constants B3, H, and U0 are calculable from 

viscosities of a suspension left unagitated, but due to the energy supplyed to the system by 

the rotor rotation,a certain extent of error as shown by the curves A, B, and C in FIG. 11 is 

unavoidable. 
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3.4 Viscosity of suspensions continuously agitated and the calculation of 83 and H 

Same as the procedure of calculation of specific constants B3 and H based on eq. (13), the 
constants are calculable from the decreasing viscosity under a constant agitation (shear 
rate) by neglecting the coagulation rate constant H. By experiences, it has been known that 
the H values of many suspensions are in the range between 10"3 and 10"9

, and the shear rate 
(r) attainable by popularly used rotational viscometers are in the range between 10"1 and 
108

. Due to the fact that the value for shear rate is usually much larger than the value for 
H, less influence of the neglect of H than of r is expected, and accordingly, the better results 
of calculation are expected by the procedure based on eq. (27) expressing the decreasing 
viscosity under a constant shear rate. 

From eq. (27) with the neglect ofH, we have, 

1Z = B·{ n. }213 
a a rt + 1 

•••••••••••••••••••••• (51) 

As shown by FIG. 12, the viscosity of sample follows the curve for eq. (27) if a constant 
shear rate is applied, and the curves for eqs. (27) and (51) agree very closely if the time of 
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viscossity measurements (t8 and t 6) are considerably shorter than the time of equilibrium 

FIGURE 12. Calculation of B3 and H 
from Decreasing Viscosity 

(tE). From the measurement under a constant shear rate, 'la• rz6, 'lE• T which is the interval 
between ta and tb, and 4 which is the interval between to and 'ta are known. If an accurate 
value oftE is known by an experiment, H value is easily calculable by eq. (32) from the shear 

rate, but it is usually difficult to determine the time of equilibrium tE accurately because the 
rate of viscosity decrease is very small in the neighbourhood of equilibrium and there is no 
sharp inflection point on the time-viscosity curve. 

The theoretical error caused by the use of eq. (51) instead of (27) may be estimated as 
follows. Obviously, the error is not caused if (H·t + 1) is equal to 1. To limit the error 
within several per cent, H·t has to be less than about 0.05, so the available time for the 
viscosity measurement is, 

t ~ 0.05/H ..•.•........••...••.••••.••• (52) 

From eq. (52), it is known that the measurement of viscosity is easier for the samples of 

smaller H since the available time for the measurement is longer. From the results of 

measurement, we have, 

= Bl'·na 
rto + 1 

} 

and from eq. (53), we can calculate R as follows; 

•..••...•.•.•••.•••.. (53) 
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•••.••.•.••••.••..•• (54) 

•••••••••.•• (55) 

Since all the values except for ta in eq. (55) are known, it is calculable as follo~s ; 

t = r·T + 1- R 
a r·(R- 1) 

••••••••••••••••••••••••• (56) 

After calculating ta, the initial time to on the theoretical time axis and U0 are calculable 

as follows; 

The B3 value is calculable by subsituting the value ta or tb which is equal to Cta + T) 

into eq. (53), and finally H value is calculable from U E by using eq. (34) as follows; 

n1.5 = 8 u, n·{ 2~ + H } 
''E 8 8 ( H + Vr)2 

From (57), we have, 

and, 

H r·{2- UE - 2v(l - UE)} 
(1 - UE) 

...•.........•....... ·(34') 

•••••••••••••••••••••••••• (58) 

Due to the neglect of H instead of r which is usually much larger than H, the procedure 
of calculation ofB3 and H from decreasing viscosities described above is expected to be more 

reliable than the previous one, but the same problem caused by the poor response or the 
time-lag of the viscometer exsists. If the time-lag is short enough, the indicator displays 

the data following the curves A or B in FIG 12, and the values of Ba and H calculated from 
these data are considered to be fairly reliable, but as shown by the curve C, the viscosity 

indicated by a viscometer of very poor response does not agree with that calculated by eq. 
(51). 

Another problem associated with the procedures of calculation of B3 and H from the 

measured viscosities is the accuracy of shear rate. Depending on the mechanical structure 
of viscometers, the extent of error caused by the end effect included in the results of 

measuements is different. Although the results obtained for a Newtonian fluid by the 
viscometers of different end effects are identical, the results for a non-Newtonian fluid are, 
in some cases, entirely different. The viscometer the shear rate of which is calibrated by 

using a Newtonianfluid of known viscosity are usually unsatisfactory for the measurements 
of non-N ewtonian viscosities. 



37 

Some examples of calculation by the procedure described above is shown below. The 

constants and parameters used for the calculations are as follows; 

Table 3 Calculation of Specific Constants 
from Decreasing Viscosity 

Test A B c D 
Rotor Speed (rpm) 10.06 12.10 14.20 14.20 

r 19.42 23.35 27.406 27.406 
j3-NS 1.0 1.25 1.5 1.5 

1k (P) 100.13 66.36 96.866 90.685 
llb (P) 87.77 60.41 90.685 77.585 
llB (P) 51.49 38.12 24.908 24.908 
ll- (P) 5838.40 5582.43 11644.8 5861.78 
T (sec) 5 5 5 5 
R 1.2185 1.1513 1.104 1.2637 
ta (sec) 22.88 33.00 48.05 18.93 
B3 X 108 1.14 l.(J9 2.274 1.144 
H 
tB 

X 106 3.33 1.86 0.067 0.5244 
(sec) 124.29 151.74 737.74 263.78 

r radius of particle, 2.261 JLm 
Cv particle concentration, 0.561 
W/C water/cement ratio, 0.25 
n3 primary particle number, 1.159 X 1010/cm3 

Dispersant P-NS, 1.0- 1.5% by weight of cement 

rznuu: ----- .... 

90.7 

77.6 

................. 
...... ... 

' ' " 

Q • Observed 
--------- Theoretical 

0 Data point not suitable 
as basis for calculation 

' ... -E;~ 

·-·-·-·-·-·-·-·-·-·-·-·.:-.::.-.-.-----·-

FIGURE 12'. Selection of Data Point 
for Calculations of 83 and H 

By the present theory, viscosity (rzmcu) at the state of complete coagulation and Ba value 
have to be the same for samples of the same particle concentration in the same kind of 
medium. All results ofB3 and llmax calculations except for test C in TABLE 3 were in a good 
agreement. The H value decreased according to the increase in the dosages of dispersant. 
Since the data points for tests C and D were selected from one experiment (curve E in FIG. 

12'), the reason of obtaining an exceptional result of calculation in test C may be attributable 
to the selection of data point Gin FIG. 12' instead off as 'la. 
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4. Extension of Newton's law and calculation of flow curves 

4.1 Extension of Newton's flow equation to non-Newtonian fluids 

After the Newtonian and the non-Newtonian viscosities were explained by the same 
mechanism and the non-Newtonian viscosity was described as functions of time and the 
shear rate, the flow equation for Newtonian fluids (1) was extended to non-N ewtinian fluids 
as shown by eq. (5) previously. After the extension· expressed by eq. (5) and derivations of 
practical viscosity equations (26) - (31) and of shear rate equations (37.1) - (37.9), the 

following flow equation in differential form became meaningful for the examination and for 
the prediction of non-N ewtonian flow curves. 

d-r; = !fJ!J.Lil = 'l ..&. + r .s1!J.._ at dt • dt dt 

.......•......•. ·(59) 

Since the shapes of flow curves on (-r;, r) plane agree with those on (-r;, t) plane when the 
shear rate is proportional to the time, the shapes of flow curves are mathematically 

predictable by calculating the time;Iependency of drJdt. For the calculation of dvdt, 
the practical forms of equations expressing 'l3 and r and the derivatives thereof have to be 
known. The dr !dt are easily calculable from eqs. (37.3)- (37.9) but d7t3 /dt for the 
equations containing the terms G·ta or G·(T - t)a are fairly complicated. For the 
convenience of calculation by eq. (59), two sets of equations were calculated as follows; 

Set A 

r = G·tn •••••..•.••.•••••••••••••••••••.••..•• (37.4) 

dr tdt = a·G·t<a·l) ••••••••••••••••••••••••••••••• (60) 

213 U ·(GHt<a + 'l + 1) + Ht 213 

l'la = Ba·na . { dit + 1)(Gtta + ll + 1) } 

i!:!k = 2·Bs-n,213.{ (G·t<a + 1> + 1)-(Ht + 1) }liS 
dt 3 Ua(GHt<a + 2) + 1) + Ht 

.•.•.•••.... (26.1) 

.G·ta·[(a + 1)·{Ua(H2t 2 -1)- H2t:ZJ + Ht·(Ua·G·t<a+ll_a)] + (1- Ua)·H 
(G·t<a+IJ + 1)2·(Ht + 1)2 

Set B 

T/2 S t S T 

dr !dt = - a·G·(T - t)<a·ll 

•••.•.••.•••••••..• (61) 

•.••.••.•••.••••••.• (37.6) 

.••.•..•....•.••..•..•. (62) 

.•• · •..••• ·(26.2) 
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G-(T-t)(ll·ll[GHt2Ub(T-t)Ca+ll + {T-{a + l)t}{Ub(H2t 2-l)-H2t:; + aHfJ + (1-UvH 

(Ht + d{Gt·(T - t)ll + 1}2 

••••••••••••••.••.•.••.....•..••.•.••••.•••. (63) 

Although two sets of equations A and B shown above are useful for the examinations of 
flow curves and hysteresis, these may be too complicated for the calculation practices. For 

the purpose of examining the theoretical influences of coagulation rate constant H or the 

shearing condition G on the shape of flow curves, it is not necessary to use general equations 
containing the initial conditions (U a and U 6) and wide variety of shearing conditions. For 
this purpose, simpler equations such as (27), (37.3), and (27.1) are considered satisfactory. 

If a is equal to 1, equations in the above sets are simplified as follows; 

Set C 

T = G-t 

drtdt = G 

•••••••••••.••••••••.•••••••.••••...••• (37.3) 

•••••••••••••••••••••••• (64) 

- . 213_{Ua·(GHt3 + 1) + Ht}213 
1Za - Ba n 3 (Ht + 1)(Gtz + 1) 

••.••••••••••• ·(26.3) 

!!:!:a_= 2·B3·U3
213.{(G·t2 + 1)·(Ht +'1)}113 

dt 3 U11(GH~ + 1) + Ht 

G·t·(UaGH~-Ht-2Ua) + H·(2GHt3 -1)·(U11 -1) 
(G·t2 + 1)2·(Ht + 1)2 

Set D 

r = G·(T- t), 

drtdt =- G 

•.••.....••••..•••••••••••••.••••• (65) 

T/2 ~ t ~ T ..................•.•• (37.5) 

••••••••••••••••••••••••••••••••••• (66) 

11. = B ·n 213. { U b·(GHt2·(T - t) + 1) + Ht }213 

3 3 3 (Ht + 1)·{G·(T - t)-t + 1} 
..•••.•... ·(67) 

E!1a. = 2·Ba·na213.[ (Ht + l)·{G·(T- t)-t + 1} :t
113

• 

dt 3 U b·(GHt2·(T - t) + 1) + HtJ 

G-[GHt2Ub(T-t)2 + (T-2·tl·{Ub(H2t 2-l)-H2t 2
} + Ht2J + (1-Ub)H 

(Ht + 1)2{Gt·(T - t)2 + 1}2 

••••••••••••••••••••••••••••••••••• (68) 

Equations (26.3) and (65) are further simplified if the shear rate is increased 
proportionally to the time and the suspension sample is initially in the state of complete 

coagulation. 
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Set E 

r = G·t ......•••••••.••••••..•..••••••••••••••••• (37.3) 

drldt = G •••••••••••••••••••••••••••••••••••••• (69) 

213 G·t2 213 

'la= Ba·na . { 1 - (H·t + 1)((H2 + 1)} 
••••••••••• (27.1) 

A!za = 2·B3·n3
213

.{ (G·t2 + 1)·(H-t + 1)}113
• Gt·(GHta - Ht - 2) 

dt 3 GHP + H·t + 1 (Gt2 + 1)2(Ht + 1)2 

••••••••••••••••••••••••••••••••••••••• (70) 

In contrast to eq. (65), eqs. (67) and (68) in sets B and D for the calculations of down 

curves of hysteresiss loops must not be simplified further, because the sspensions are not in 

the state of complete coagulation nor in the state of complete dispersion at the turning poimt 

(t = T/2) where the shear rate turns to decrease. By the use of any set of equations shown 

as above, the curves describing the relationship between d-rJdt and the time are calculable 

and from the drldt curves, the properties of non-Newtonian flow curves of suspensions 
become predictable. 

For expressing the relationship between the shear stress and the shear rate directly, eq. 

(59) may be transformed as follows; 

•••••••••••••••••••••• (71) 

but the calculations of whole flow curves by eq. (71) are complicated as shown by the 

following sets F and G and are not suitable for the practices except for the calculations of 

rheology parameters (yield stress "t0, and Bingham's plastic viscosity dTldr) by eq. (72). 

"(; = "(; -~ 0 
• dr. 

••••••••••••••••.•••••••.••••••..•.. ,(72) 

Set F 

r = G·t •..•••....•.•.•••••.•..•....•..•...•.. (37.3) 

dtldr = 1/G •....•••••..••..•.•••••••..•.... (73) 

1Z = B ·n 213.{ Ua·(Hr
3 + G~ + GHr } 213 

3 3 a (Hr + G)-(r2 + G) 
••...••..••••• ·(74) 

~ = 2·Ba·na
213

.{ (r2 + GHHr + G) } 113
• 

dr 3 Ua(Hr3 + G~ + GHr 

G·{r·(Uar3H-GrH-2UaG2
} + H·(2r3H-G2HUa-1)} 

(Hr + G)2·(r2 + G)2 

••..••••.••....•..•••••••••••• (75) 
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r (= G·t) 

D 

G·tf -·-·-·-·-·-·-·-·-·-· 

G·tf -·-·-·-·-·-·-·-· 

G·tf 

Tc 

Tb 

C B 
I , 

I .• 
I.· 

A 

I . • 
I .. 

• • 

Pseudo Newtonian 
Flow after the 
Equilibrium 

Pseudo Bingham 
Region on Ostwald 
Curve 

Thixotropic 
Region 

dr;/ dt < 0 

FIGURE 13 Typical flow curves of suspensions 

Set G 

•••••••••••••••••••••••• (76) 

bywriting w = 1/a 

••••••••••••••••••••••••••••• (77) 
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(1 + CU)·G<Ilr(o){(U9 -l)·H2·r2l>l-U9G~ + <llH·Gm{UqTil+Sml_(U
9
-l)G2mTI<Il·lj-HG2mr2l>l 

(Hr(i) + G(i))2·(r11 +(ill + G(i))2 

•••••••••••••••••••••••••••••••••••• (79) 

After the extension of Newton's flow equation to non-Newtonian fluids, flow curves and 

hysteresis loops became calculable, and the meanings of rheological parameters ("t0 and 

plastic viscosity) became calculable and expl~inable on the same basis as Newtonian fluids. 

4.2 Influence of experimental conditions U0 and G on the shape of flow curve 

The shapes of flow curves are influenced by the test conditions (U0 and G) and by the 

property of suspension samples (H). Immediately after the vigorous agitation for mixing 

the particles and the medium, U0 takes a low value and it increases and approaches 1 during 

the unagitated period before starting the experiments. The longer the standing time 

before the experiment, the larger the U0 value which makes the range of variation of d:t/dt 

wider. 

dT.!dt 

FIGURE 14 

A:U0 = 1.0 

A: U0 = 1.0 

B3 = 8.9 X 104 

n 3 = 2.271 X 1010 

a=l 
H = 10·6 

G= 0.1 

Influence of initial viscosity on d,;/dt 

As is obvious from the equations expressing d"t I dt previously shown, "t increases 

according to the increase in r when d"t!dt is positive. When the d"t I dt curve passes 

through the negative region, there appears a so called thixotoropic region on the flow curve. 

So the decrease in U0 value causes the change in the shapes of flow curves from A to B as 
shown in FIG. 13. The influence ofU0 on a d"t/dtcurve is shown as follows by FIG. 14. 
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Other than the influence ofU0 value, the shapes of flow curves are also influenced by the 
shearing condition G. The influence of G is directionally the same as that of U 0, that is, the 
larger the G value, the wider the range of variation of d:rldt. The decrease in G value 
causes a variation in the shapes of flow curves from A to D as shown in FIG. 13. The 
influence ofGon d:rldtis shown in FIG. 15. As shown by eqs. (37.1)- (37.9), the shearing 
condition is not solely represented by G, and d:tl dt varies according to the change of 
parameters a and cu. 

d-t/dt A:G= 1.0 

B:G = 0.1 

100 

-60 

B8 = 8.9 X 10-4 
n3 = 2.271 X 1010 

a=1 
H = 10-e 
U0 = 1.0 

D:G = 0.001 

FIGURE 15 Influence of shearing 
condition G on d-ddt 

4.3 Influence of coagulation rate H on the dTJdtcurve 

FIG. 16 shows the influence of coagulation rate constant H on the shape of d:rJdt curve. 
The decrease in H value causes the changes of flow curves from D to A as shown in FIG. 13. 

Among the parameters causing changes in the shapes of flow curves, H is only one which 
is closely related to the chemical composition of suspensions. Addition of dispersant or the 
use of viscous medium usually cause a decrease and a higher particle concentration or a 
larger number of primary particle tend to cause an increase in H value, but it is difficult to 
predict an exact figure before the flow curve experiments. 
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d-.; /dt B3 = 8.9 X 10"' 

100 

-60 

n3 = 2.271 X 1010 

a = 1 
G = 0.1 
U0 = 1.0 

A:H = 10"2 

B: H = 10-3 

FIGURE 16 Influence of coagulation rate 
constant H on d-.;/dt 

Mild agitation during the sample preparation, the longer unagitated time before the 

rheological experiment, and the larger H value tend to cause an increase in U0 value, but 

same as the H value, it is practically impossible to predict an exact figure before the 

experiments. Since U0 and Hare predictable and controllable only directionally, G (or r) 

is the only parameter which is fully controllable artificially and this is the reason why the 

flow curves and hysteresisloops are unrepeatable. 

Since not all factors causing variations in the shapes of flow curves are fully 

controllable, it is meaningless to classify the fluids as substance by the shape of flow curves, 
although it may not be meaningless to classify them as phenomena. Although the shapes 

of flow curves or the flow properties of suspensions are not fully controllable, the direction of 

transition from a flow type to another is explainable and predictable by the calculation of 
d-t!dt or d-.;Jdr as described in this chaptor. 
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