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The phenomenological theory of martensitic transformation was applied to the herringbone 
tetragonal to monoclinic phase transformation in Y-PSZ. Input data for the calculation 
were chosen from previously obtained data on an arc-melted Zr02-2mol%Y20 3 alloy. The 
observed striations along a {lOl}m plane in the m-plates were assumed to be the trace of 
lattice invariant shear, i.e., twinning or slip on the plane. Among twenty solutions, four 
were found to be consistent with the experimentally observed habit planes and orientation 
relations. Although these four solutions were not crystallographically equivalent, they were 
all similar and predicted the same (702)m habit planes. Calculation was also made for the 
case where the parent was a single variant tetragonal lattice. Two extra solutions with 
(IT02)m and (502)m habit were predicted in addition to the same four solutions predicted 
for the herringbone tetragonal parent. 

1. Introduction 

The tetragonal to monoclinic phase transformation in zirconia and PSZ(Partially Stabilized Zirconia) 
is well known to be martensitic[1,2). The crystallography of martensitic transformation is best 
studied by the phenomenological theory of martensitic transformation[3,4), and a few applications 
to zirconia systems can be found in the literature[5-8). In these studies, however, evaluation of 
the results was difficult mainly because of the lack of detailed experimental data to compare with. 
In our recent study using coarse grained specimens prepared by arc-melting, sufficient data were 
accumulated for a detailed phenomenological analysis[9,10). Although the results has been partly 
reported elsewhere[ll], a more comprehensive description of the procedure and results is aimed here. 
In addition, an analysis is made for the case where the parent lattice is single variant tetragonal. 

2. Summary of crystallographic data 

Table 1 summarizes crystallographic data obtained in previous experimental works[9,10). Individual 
items are briefly explained in the following. 

2.1 Specimens 

The specimens were prepared by plasma-arc-melting* of sintered Zr02 -2mol%Y20s t pellets on 
a water cooled copper hearth. The lattice parameters were measured on mixed phase powders 
prepared by pulverizing a sintered body. Arc-melted specimens contained grains of ~lmm and were 
fully tetragonal at room temperature. Since the t-phase persisted even at 77K, the m-phase was 
induced by aging at 523K in air for several hours. 

2.2 Structure of the parent phase 

Figure 1 shows an electron micrograph of a few m-plates produced in the parent phase. The parent 
t-phase exhibits a typical herringbone structure comprising two types of parallel bands with {lOl}i 
twins, as schema.tically dipicted in Fig. 2. When three mutually perpendicular t- variants are 
denoted by :~:, y, and z, one type of band comprised (lOl)t or (lOl)t twins of x and z variants and 
the other (Oll)t or (Oll)t twins of y and z variants. The band boundaries are parallel to a (llO)t 
or (l10)t type plane. In order that the overall shear strain of the e-t transformation be minimized, 

* Model: NMB.PLASMA-300AW, Nippon Miniature Bearing Co., LTD., Tokyo, Japan 
t TZ-2Y powder: Y20s 3.68wt%, oxide inpurity 0.038wt%, Tosoh Co., Tokyo, Japan 
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Table 1. List of experimental data 
Specimen Arc-melted ZrOa- l!mo!%Y20s 
Lattice parameters at = 0.51003 nm llm = 0.51570 nm 

Ct = 0.51866 bm = 0.51909 
cfa::::: 1.017 Cm= 0.53251 

{3 = 98.61 deg 
Parent phase Stack of (lOl)t twins 

structure with z var .= 
Lattice correspondences ABC, ACE, BCA, 
Lattice invariant {101} < 101 >m slip 

shear {101} < 010 >m slip 
{101}., twin 

Observed orienta.ion 
relation 

Observed habit 

CAB,CBA 
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Fig. 2. Schematic representation of the t-phase herringbone structure. 

axes conform with a right handed coordinate system). Since we do not have any reason to assume 
any of these six LCs are preferred in practice, calculation will be made for all six nonequivalent LCs. 

2.4 Lattice invariant shear systems 

The phenomenological theory assumes that a martensite plate fulfills an invariant plane strain con
dition with respect to the matrix. Since the lattice strain from the parent to the product lattice is 
not normally an invariant plane strain, an additional strain called lattice invariant strain(LIS) by 
slip or twinning is assumed to take place so that the total strain becomes an invariant plane strain. 
When the LIS system is not known, plausible LIS systems are assumed for calculation. When the 
number of assumed LIS systems is large, however, a large number of solutions arise accordingly and 
thus it becomes difficult to make sensible comparisons with experimental observation. Fortunately 
in the present specimen, fine stria.tions, which were similar to the LIS traces often observed in metal 
martensite, were observed(see Fig. 1 or Ref. 10). The striations always appeared nearly parallel to 
the· (101)t twin traces of the matrix. Thus we assumed that the LIS is either slip or twinning on 
the {101}m plane which is derived from the (101)t plane through the LC adopted. On the {lOl}m 
plane, < 101 >m and < 010 >m directions are probable slip directions and {lOl}m twin is also 
probable twin system of the m-lattice[l2]. Thus these three LIS systems on the {lOl}m plane are 
employed in the calculation. 

2.5 Orientation relation and habit plane 

Lattice orientation relation and habit plane orientation are not necessary for a phenomenological 
calculation, but they are important for examining the results. The orientation relation in Table 1 
was obtained by a precession camera method using a single grain of the t-phase containing many 
m-plates. Although the c-axis direction of the matrix could not be uniquely identified owing to the 
presence of three mutually perpendicular t-variants in the herringbone structure, the result clearly 
showed that the bm and Cm remained parallel to two of the principal axes of the matrix lattice, while 
am was tilted from the third principal axis. The same orientation relation has been most commonly 
reported in zirconia systems[2J. 

A habit plane orientation is usually expressed in terms of Miller indices referred to a parent 
lattice. When the symmetry of a parent lattice is high, as in the present case(the herringbone 
structure has a cubic symmetry on an average), it is difficult to uniquely determine the habit plane 
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indices using a single surface trace analysis unless candidates are limited to a small number. On 
the other hand, since the symmetry of the m-lattice is low, i.e. only a mirror reflection across the 
(010)m plane, the habit plane could be uniquely determined in the m-basis. The analysis identified 
the habit plane to be near the (30l)m plane. 

3. Procedure of calculation 

The phenomenological theory of martensite assumes that a. martensite plate forms with an invariant 
plane strain. This assumption is justified by Eshelby's ellipsoidal inclusion problem[13]. Although a 
lattice strain itself is not genera.lly an invariant plane strain, an introduction of an appropriate shear 
by slip or twinning can make the total strain an invariant plane strain. 

When the parent lattice is a single variant, the above condition may be expressed by the following 
matrix equation. 

S=RPB (1) 

where B denotes the lattice strain (referred to Bain strain), P the lattice invariant shear strain, and 
R the rigid body rotating. Given B and the shear system of P, Eq. (1) can be solved. In other 
words, the matrices S, R, P can be explicitly determined. Once this is done, the habit plane, the 
shape strain, orientation relation, etc., can be determined. 

( 0) t (b) hbt cc> m 

.o~~ 
I Z X 

8 

Fig. 3. Diagram showing various stages of the transformation. 

Cd> 
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In the present case, however, the parent lattice is not a single variant lattice. Instead, it 
comprises stacks of (101)1 twin layers. A necessary modification of Eq. (1) is described referring to 
Fig. 3, where (a) denotes the z-variant of the t-lattice, (b) twinned parent lattice, (c) the m-lattice, 
and in (d) LIS slip is introduced to ensure an undistorted plane (dashed line); a. further rotation R 
bring the undistorted plane to an invariant plane with respect to the parent lattice {chained line). 
When the parent lattice is the z-varia.nt, the lattice strain from (a) to (c) can be directly substituted 
for B in Eq. {1). While if the parent lattice is the twinned layers, the strain from (b) to (c), z.e. 
U, must be used in place of B in Eq. {1). Denoting the twinning strain from (a) to {b) by T, the 
following equations are obvious. 

B=UT (2) 
and 

{3) 
A substitution of U for B in Eq. (1) yields, 

S=RPBT-1 {4) 
When we choose a twinned band of idealized herringbone structure for structure {b), strain T is 
completely known from the twin ratio. Thus, Eq. (4) includes the same number of unknowns as in 
Eq. (1) and can be solved. 
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Next, we describe a method of obtaining explicit forms of the matrices B, T, and P. In 
calculation, it is convenient to describe strain matrices and vectors in an orthonormal coordinate 
basis. On the other hands, crystallographic parameters are usually referred to the crystal lattice 
basis. Thus, we first introduce transformation matrices so that we can freely interchange the reference 
bases. We choose an orthonormal basis parallel to the principal axes of the z-variant and denote the 
basis by i, while the crystal basis relevant to the z- variant and m-lattice by z and m, respectively. 
Then, the transformation matrices from z to i basis and m to i basis may be expressed using the 
lattice parameters, as follow: 

c-10033 0 

5.1L66) (iJz) = 0 5.10033 
0 0 

( 6.09887 0 5.3~13) (iJm) = -0.~7204 0 
-5.19090 

And the inverse transformation matrices are defined by the corresponding inverse matrices. 

(zJi) = (iJz)-1 

(m.H) = (iJm)-1 

(5) 

(6) 

(7) 

(B) 

Following Bowles and Mackenzie's notation(4], a vector is transformed by multiplying the column 
vector to the transformation matrix from the right, while a plane normal is transformed by multi
plying the row vector to the inverse transformation matrix form the left. For example, a vector v 
and a plane normal h referred to the z- basis may be converted into the orthonormal basis by the 
following formulae, 

(i, v] = (iJz)[z, v] 

(h, i) = (h, z)(zJi) 

Bain strain referred to the orthonorma.l basis can be obtained by[4), 

(iBi) = (iJm)(mCz)(zJi) 

(9) 

(10) 

(11) 

where (mCz) denotes a lattice correspondence matrix. The explicit forms of the above mentioned 
six lattices correspondences are: 

(mCz)ABC = (! 0 0 ) c 0 0 ) 1 0 (mCz)ACS = 0 0 -1 
0 1 0 1 0 

(mCz)BCA = (! 0 1 ) ( 0 1 0 ) 0 0 (mCz)SAC = -1 0. 0 (12) 
1 0 0 o. 1 

(mCz)CAB = (! 1 0 ) c 0 I ) 0 1 (mCz)CBA = 0 -1 0 
0 0 1 0 0 

Slip and twinning are an invariant plane strain, which may be described in terms of the invariant 
plane normal p and the shear direction d, 

P =l+mdp1 (13) 

where I denotes a unit matrix and m the amount of shear, p1 denotes the transpose of p. Thus the 
twinning shear T from (a) to (b) in Fig. 3 can be calculated from 
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(o"Ti) =I+ ~•g(;Jz) [ j l. (I 0 I), (zJo) (14) 

where g is the factor which normalizes the vectors {101) .. {zJi) and {iJz)[10I] .. represented in the 
orthonormal basis. vis the amount of shear for a complete twinning (v = (c2

- a2)/a = 0.0354). 
Since the structure in Fig. 3(b) comprises twins of the x and z variants with a ration 2, T is 2/3 of 
complete twinning. 

When the LIS is slip, the LIS matrix can be calculated in the similar way from the slip plane 
and direction. The plane was assumed to be the {101}m plane which corresponds to the (101) .. 
plane. Thus the explicit indices varies depending on the lattice correspondence adopted. In case of 
ACE lattice correspondence, for example, the slip plane in the m-lattice is 

(
1 0 0) 

(1 0 1) .. (zCm)ACB=(1 0 1) .. 0 0 1 =(1·-1 0) .. 
0 -1 0 

(15) 

Thus, the slip direction is [llO]m or [001]m, since we consider two types of shear directions namely 
< 101 >m and < 010 >m· For the former case, the LIS strain is expressed by: 

(iPi) =I+ th(;Jm) [l L (I -I 0 lm (mJ•J 

( 

-0.49713 0.0 -0.48832) 
= I+ t 0.07527 0.0 0.07394 

0.50610 0.0 0.49713 i 

(16) 

where his the normalization factor for the two succeeding vectors in the orthonormal basis, t denote 
the amount of shear. 

For the twinning LIS, the shear direction must be first determined. Taking the same LC as 
above, for example, the twinning plane in the m-lattice is {liO)m· Then the twinning elements K1 

and f/2 are (llO)m and [liO]m, respectively. Referring to Fig. 4, the shear direction d and the 
amount of shear s are calculated using the following equations. 

K1={1 -1 O)m{mJi) 

., =(iJm) HL 
s = 2tan(cos-1 (Kl ·1]2)) 

d//(Kl ·i72)K1-i12 

Ci= d/ Id I 

(17) 

where the attached bars denote unit vectors along the corresponding vectors. Using shear plane 
normal K 1 and shear direction d, the twin strain is expressed by 

(iPi) = !sdK1 

( 

0.08310 
=l+t 0.70348 

-0.08460 

0.0 0.08163) 
0.0 0.69101 
0.0 -0.08310 

{18) 

where f denotes a twin fraction, thus fs describes the amount of shear t. Both Eqs. {16) and (18) 
include an amount of shear t as a parameter. 
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~. normal 

0 • K• plane '7, 

Fig. 4. Diagram showing the geometry of a twin deformation. K 1 , 1]1, and 1]2 are the usual 
twin elements. d and s denote the direction and amount of shear. · 

Including the above calculations, calculations to solve Eq. (4) and the subsequent calculations 
of physical parameters, such as habit plane, orientation relation, etc., from the solution are carried 
out through a. computer program. Equation (4) is solved through the following three steps. 

First, R in Eq. (4) is eliminated by multiplying its transpose. 

S'S = (RPBT-1)'(RPBT-1) 

= (PBT-1)'(R'R)(PBT- 1) 

= (PBT-1)'(PBT-1) 

(19) 

The above equation contains only one parameter, t. The condition that S is an invariant plane 
strain is equivalent to that one of the eigen values of Eq. (19) is unity and the remaining two are 
smaller and greater than unity, respectively. A critical value oft, i.e. tc, which fulfills this condition 
is numerically sought. 

Then, tc is substituted into Eq. (4), and which follows: 

R'S =PBT- 1 (20) 

The strain described by Eq. (20) contains generally two undistorted planes. The eigenvector cor
responding to the unit eigenvalue lies on the undistorted planes. Two other undistorted vectors 
normal to the unit eigenvector can be determined from the ratio of the other two eigenvalues. The 
combination of these two undistorted vectors with the unit eigenvector defines two undistorted 
planes. 

Finally R is determined so that one of the undistorted plane is brought back to the initial 
orientation so that the plane become invariant (undistorted and unrotated). 

In this way, all the matrices in Eq. (4) are explicitly determined. It is a simple matter to find 
the invariant plane, orientation relations, the total shape distortions, etc., in the orthonormal basis 
and convert them into either of the crystal bases. 

4. Results and Discussion 

Table 2 shows the number of solutions for the critical shear which ensures the middle eigenva.lue of 
Eq. (19) becomes unity for each combination of the three LIS systems with the six LCs. Among the 
eighteen combinations eight yield one or two tc's. For each tc, since there exist a pair of undistorted 

· -planes, two solutions conjugate each other result depending on which of the undistorted planes is 
selected to be invariant. All the solutions are listed in Table 3(a.)-(c) separately for the three types 
of LIS systems. 
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Tabel 2. Number of solutions of the critical values of LIS 
LIS system 

LC No. LC {101} < 101 >m {101} < 010 >m {101}m twin 

1 ABC 0 0 
2 ACB 1 1 
3 OOA 1 1 
4 BAC 1 0 
5 CAB 1 0 
6 CBA 0 0 

Table 3.(a) Solutions for LIS = {lOll < 101 >m slip 
Parameter Solution 
LC 2ACB 3BCA 4BAC 
LIS_ (1i0)[110]m (110)[1iO]m (Oil)[011]m 
t. 0.02416 0.01293 0.01293 
m 0.15763 0.15763 0.15799 
hl ( 0.96011, (-0.01694, (-0.00482, 

-0.27962, 0.27962, 0.95867, 
0.00085) -0.95996) -0.28449) 

dl [ 0.00381, [ 0.00014, (-0.01761, 
-0.99999, 0.99999, -0.00197, 
-0.00020] -0.00381] -0.99984] 

[100],A [100]m 8.60° [010]m 1.01" [OIO]m 1.01 o 

[Ol0]1A [001]m 0.01" [001]m 0.01 o (100]m 8.62° 
(001}1A [O'iO]m 0.05° [100]m 8.66" [OOl]m 1.01" 

h2 ( 0.07753, (-0.00117, (-0.01755, 
-0.99699, 0.99699, 0.07194, 
-0.00013) -0.07752) -0.99725) 

d2 [ 0.97811, [-0.01727, [-0.00355, 
-0.20807, 0.20807, 0.97708, 
0.00088] -0.97796] -0.21286] 

[100],A (100]m 0.15° (010]m 1.01• [O'iO]m 1.01" 
(010]tA (001]m 8.47° [001]m 8.47" [100]m 0.14° 
[001}1A [OIO]m o.os• [100]m 1.02" [001)m 8.53" 

0 
2 
2 
0 
0 
0 

SCAB 
(Oll)[01i]m 
-0.02417 
0.15799 

(-0.28453, 
0.95867, 
0.00005) 

(-1.00000, 
-0.00197, 
-0.00085] 

[OOl]m 0.05" 
[100]m 8.62° 
[010]m 0.05" 

(-0.99741, 
0.07194, 

-0.00084) 
[-0.21289, 

0.97708, 
0.00002] 

[001]m 8.47° 
[IOO)m 0.14" 
[OIO]m 0.05" 

We now examine these results. In all so- Table 3.(b) Solutions for LIS= {101} 

lutions the amount of LIS shear(tc), and the < 010 >m slip 
amount of shape strain (m) are less than 0.2 Parameter Solution 
and appear to be reasonably small. Orienta- LC 2 ACB 3BCA 
tion relations are described in terms of angles LIS (ll0)(001]m (110)(001]m 
between the corresponding principal axes of the t. 0.11795 0.11489 
two lattices. They can be grouped into three m 0.11775 0.11566 

types, namely (i) bm and Cm remain ·parallel to hl ( 0.63073, ( 0.66620, 

the principal axes of the parent lattice, while am -0.38379, 0.38376, 
-0.67445) -0.63946) is inclined, (ii) am and bm remain parallel to the dl [-0.16072, [ 0.08720, 

principal axes of the parent lattice, while Cm is -0.97424, 0.99274, 
inclined, (iii) all of the m-axes are inclined sev- -0.15819] 0.08286] 
era.l degrees from the principal axes of the parent [100],A [100]m 9.10° [010]m 0.36" 
lattice. One of the conjugate solutions (listed in (OlO],A (001]m 0.56° [OOl]m 0.29° 
the upper case in Table 3(a)-{c)) are of type (i), [001]JA [OiO]m 1.37° [lOO]m 8.82° 
while the others (lower case) are either of type h2 (-0.12072, ( 0.12281, 
(ii) or (iii). Thus, only those solutions in the -0.97368, 0.99142, 
upper case in Table 3(a)-(c) agree. with the ob- -0.19330) 0.04482) 

d2 [ 0.65283, [ 0.67490, served orientation relation (see Table 1). 
-0.33559, 0.33552, 

We next examine the habit planes of the -0.67911] -0.65721] 
ten solutions which agree with the experimental (lOO)tA [100)m 4.50" (010]m 4.40" 
orientation relation. Since the habit planes in [010]JA [OOl]m 5.94" [001)m 5.94" 
Table 3(a)-(c) are described in reference to the [001]1A (OiO]m 4.28" (100]m 4.55" 
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Table 3.(c) Solutions for LIS= {101}m twin 
Parameter Solution 

LC 2 ACB-1 2 ACB-2 3 BCA-1 3 BCA-2 
LIS (liO)m twin (1iO)m twin (110)m twin (110)m twin 
t. 0.11587 0.13440 0.08084 0.09937 
m 0.11512 0.11785 0.11786 0.11512 
hl (-0.60293, (-0.47005, ( 0.47005, ( 0.60293, 

0.38318, 0.37401, 0.37401, 0.38318, 
0.69974) 0.79948) -0.79948) -0.69974) 

dl [ 0.02756, [ 0.00551, [-0.00551, [-0.02756, 
0.99914, 0.99994, 0.99994, 0.99914 
0.03092] 0.00936] -0.00936] -0.03092] 

[100)!A (100)m 8.68" [lOO]m 8.62" (OlO]m 1.05" (010)m 1.24" 
[010)1A (OOl]m 0.10" [001]m 0.03" [001]m 0.03" [001]m 0.10• 
(001]1A [OiO]m 0.22° [OIO]m 0.04" (100]m 8.65° [100]m 8.62° 

h2 (-0.00698, (-0.02167, ( 0.02167, ( 0.00698, 
0.99755, 0.99824, 0.99824, 0.99755, 
0.06955) 0.05516) -0.05516) -0.06955) 

d2 [-0.61682, [-0.47996, [ 0.47996, [ 0.61682, 
0.33485, 0.32408, 0.32408, 0.33485 
0.71233] 0.81524) -0.81524] -0.71233] 

[lOO]tA [100]m 4.72" [100]m 5.51" (010]m 3.30" (010]m 4.06" 
[OlO]IA (001]m 5.95° [001)m 6.12° [001)m 6.12° (001)m 5.95° 
(OOl]1A (OIO]m 4.50" (OIO)m 5.27" (lOO) m 3.45° (lOO]m 4.20" 

100m 

401m 

"" /2 3 

_/ '5 

0 3-1 
301m 3-2 

~2 
0 63 

2-2 0 2-1 

~--------------------------+-------------------------------~010m 

Fig. 5. Predicted habit planes for various LIS systems, 0 :{101} < 10I >m, /:::,. :{101} 
< 010 >m, 0 :{lOl}m twin 

orthonormal basis, they are converted to the m-lattice basis to allow a direct comparison with the 
observed habit plane orientation. These are projected on a. stereograph of the m-lattice in Fig. 5. 
The habit plane of a. particular solution may be identified in the plot by the LIS type and LC number. 
It is seen that all four solutions for the {101} < 10I >m LIS system results in approximately the 
same habit plane near (301)m, whereas those for the other two LIS systems result in distinctly 

· .different orientations. Since experimental habit plane is close to (301)m, only those solutions with 
{101} < 101 >m LIS system agree with observation. 

Since these four solutions are not crystallographically equivalent, a further examination was 
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Tabel 4. Number of solutions of the critical values of LIS(Single variant parent lattice) 
LIS system 

4 (10i)[101]m LC Code LC 1 (110)[1IO]m 2 (Oll)[OI1]m 3 (101)[I01]m 

c ABC 1 1•4 0 0 
A BOA 1•3 1 0 0 
B CAB 1•2 l•G 0 0 

*2~*6 correspond to the solutions 2~6 in Table 3(a), respectively. 

Table 5. Solutions for LIS= {101} < 101 >m slip (Single variant parent lattice) 
Parameter Solution 
LC ABC-1 ABC-2°4 BCA-1•3 BCA-2 CAB-1•2 CAB-2•5 

LIS (110)(1IO]m (Oll)(OI1]m (llO)[liO]m (Oll)[Oil]m (110)[1IO]m (Oll)[OI1]m 
t. 0.03542 0.03541 0.03504 0.35418 0.00169 0.00169 
m 0.15434 0.15799 0.15763 0.16876 0.15763 0.15799 
hl (-0.98453, ( 0.95867, (-0.01694, ( 0.00293, (-0.27962, (-0.28453, 

-0.01777, -0.00482, 0.27962, 0.37334, 0.96011, 0.95867, 
0.17431) -0.28449) -0.95996) -0.92769) 0.00086) -0.00005) 

dl [-0.11809, [-0.00197, [ 0.00014, [ 0.01734, [-0.99999, [-1.00000, 
0.00224, -0.01761, 0.99999, 0.99326, 0.00381, -0.00197, 
0.99300] -0.99984] -0.00381] 0.11458] -0.00020] -0.00086] 

[100]tA [100]m 8.49° [100]m 8.62° [010]m 1.01° [010]m 1.03° [001]m 0.01" [OOl]m 0.05° 
[OlO)tA [OlO]m 0.99" [OlO]m 1.01 o [OOl)m 0.01° [OOl]m 1.10° [100]m 8.60° [lOO]m 8.62° 
[001]tA [OOl]m 0.18° [001]m 1.01° [100]m 8.66° [100]m 9.00° [010]m 0.05° [010]m 0.05" 

ha (-0.18934, ( 0.07194, (-0.00117, ( 0.01715, (-0.99699, (-0.99741, 
0.00085, -0.01755, 0.99699, 0.99923, 0.07753, 0.07194, 
0.98191) -0.99725) -0.07752) 0.03540) -0.00013) -0.00084) 

da [-0.99452, [ 0.97708, [-0.01727, [ 0.00155, [-0.20807, [-0.21289, 
-0.01827, -0.00355, 0.20807, 0.29857, 0.97811, 0.97708, 
0.10289] -0.21286] -0.97796] -0.95439] 0.00088] 0.00002] 

(100]tA [100]m 1.04" [100]m0.14" [OlO]m 1.01" [010]m 0.99" [001]m 8.47" (001]m 8.47° 
[010]t/\ [010]m 1.03° [010]m 1.01" [001]m 8.47° [001]m 8. 77° [lOO]m 0.15° [lOO]m 0.14° 
(OOl]tA [001]m 8.44° [001]m 8.53° [100]m 1.02° [lOO] m 0.10° [010)m 0.05° [010]m 0.05" 
*2~*5 see the footnote of Table 4. 

made to see if all of these appear in practice. Recasting of the predicted habit planes onto the t
basis stereograph enabled to distinguish each of the solution from others. The habit plane traces of 
five observed plates in a single twin band passed all four predicted habit pl~e normals and this fact 
indicated that all of the four solutions indeed exist[ll]. 

So far all the calculations were made for a particular band with the twin ratio of 2. In practice, 
the twin ratio varies from one place to another. For a twin band with an arbitrary twin ratio, 
solutions could be obtained by substituting an appropriate twin ratio in place of the factor 2/3 of 
the second term on the right hand side of Eq. (14). However, it was proved that a variation of the 
twin ratio does not change the result except for the amount of LIS[ll]. This fact arises from the 
equivalence of the {101)1 twin in the parent lattice and the slip on the corresponding {10l}m plane 
along the < 101 >m direction. Thus a change in the twin ratio in the parent is compensated by 
an appropriate amount of the slip in the m-lattice. This may be understood by the fact that in 
the phenomenological theory, LIS is often employed in the parent lattice instead of the martensite 
without altering the result. 

Next we consider the case where the parent lattice is a single variant t-phase. A substitution 
of zero into the twin ratio of Eq. {14) makes the equation applicable to such a case. But from 
the above argument, as long as the same LIS system is assumed, the same solutions as before are 
expected to arise. However, for a twinned band, the plane of LIS was selected to be the {101}m 
plane which was derived from the (101)1 plane through the lattice correspondence. Thus if there 
are no twins, any of t_!le six {101} < 101 >m l!_lip systems are equally probable. (Among these six 
·planes, (llO)m and (llO)m, and (Oll)m and (Oll)m are crystallographically equivalent. Thus, there 
arise four non-equivalent LIS systems.) On the other hand, for a single z-variant, since a and b 
axes are equivalent, only three nonequivalent LCs arise, namely ABO, BOA, and CAB. For all the 
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Fig. 6. Predicted habit planes for a single variant parent lattice. {101} < 10I >m slip is 
assumed for LIS. 

combinations of the four LISs and the three LCs, similar calculations were conducted as before. 
Table 4 lists the number of critical LIS resulting in a unit eigenvalue. Recalling that the lattice 

correspondences ACiJ and BAG are equivalent to CAB and ABO, respectively, for a single variant 
t-lattice, it is seen that four of the six LC-LIS combinations with a solution are the same as listed 
in the third column of Table 2. As explained previously, these four combinations result in the same 
as those in Table 3{a) except for the te values {see Table 5). Thus, for a single variant t-lattice, only 
two extra pairs of solutions arise, in which only one of the conjugate solutions satisfies the observed 
orientation relation as before. The habit planes of all six solutions listed in Table 5 are plotted 
in Fig. 6. The symbols denote the combination of the LC code and LIS number in Tables 4 and 
5. The habit plane of the new solutions are {1102)m and (502)m, which are 6 deg apart from the 
previously obtained (702)m in the opposite directions. An experimental distinction among the three 
habit plane orientations requires a careful trace analysis. 

Lee et a/.[14] reported (401)t and (410), habit planes for m-plates formed in a single variant 
t-grain. The presently predicted habit planes indices in the m- lattice basis change little when they 
are converted into the t-lattice basis, apart from the order of indices which depends on the LC 
adopted. Thus, the present habit planes may be expressed by {702}t, {1102}t and {502}t. The 
habit planes reported by Lee et al. are quite close to the presently predicted {702}t plane. 

Finally the influence of the lattice parameter deviations, which may arise from experimental 
error or variation of the alloy composition, on the result is briefly examined. Calculations were made 
for two cases, one with c/a = 1.013 keeping the unit cell volume constant and the other with the 
lattice parameters 0.5% greater keeping c/ a = 1.017. In the former case the habit plane deviated by 
0.5°, while in the latter by 2°. The influence to the lattice orientation were even smaller; in both 
cases about 0.2°. These deviations were smaller than the usual experimental error and thus the 
deviation of the lattice parameters of the order considered here is unlikely to alter the conclusions 
of the present analysis. 

5. Summary 

"The phenomenological theory was applied ton the herringbone tetragonal to thin plate monoclinic 
transformation in an arc-melted Zr02 - 2mol%Y20 3 alloy. Comparisons of the calculated results 
and observeda.t a in habit planes and orientation relations lead to the following conclusions. 
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1. The LIS is likely to be the slip in the {101} < 10I >m system on the plane which corresponds 
to the (101)1 twin plane of the parent lattice. 

2. Corresponding to four different LOs, four different solutions result, but they are all similar and 
assume a (702)m habit plane. 

3. When the parent lattice is a single variant tetragonal lattice, i.e. free from twins, two extra 
solutions are predicted, in addition to the above four. Their habit planes are (1102)m and 
(502)m· 
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