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ABSTRACT 
Tensile strength of Y,Oa-stabilized Zr02 polycrystals(Y--TZP) was measured by a newly 

developed tensile testing method with a rectangular bar. The tensile strength of Y-TZP was 
lower than that of three-point bend strength,and the shape of the tensile strength 
distribution was quite different from that of three-point bend strength distribution. 

It was quite difficult to predict the distribution curve of the tensile strength using the 
data of the three-point bend strength by one-modal Weibull distruibution. The distribution of 
the tensile strength was analyzed by two-or-three-modal 'tleibull distribution coupled with 
an analysis of fracture origins. 

The distribution curve of the three-point bend strength which was estimated by multimodal 
Weibull distribution agreed favorably with that of the measured three-point bend strength 
values. 

A two-modal Wei bull distribution fuction was formulated approximately from the distribu-­
tion of the tensile and three-point bend strengths, and the estimated two-modal Weibull 
distribution fuction for the four-poin bend strength agreed well with the measured four-poit 
bend strength. 

I. Introduction 
Design of ceramic components in structural applications is necessary to assure their 

mechanical reliability and safety. The fracture of brittle material is controlled by defects 
which populate the specimen. The strength of brittle material show large valiability and 
dependence on the size of the specimen. The probabilistic characteristics of strength are 
generally analyzed by a Weibull distribution funtrion 1

-
3

• 

The strength of ceramic materials has usually been represented by the bend strength 
value,since specimen preparation and testinf are easily conducted.However,In the bend 
test, stress gradients exist in the specimen, and effective volumez-a is quite small 
compared withthat of the tensile test. Therefore, using bend strength data to design mechanical 
parts has many limitations. 

Although many tensile test method have been already proposed4
-

7,they are considered to be 
difficult to perform because of contplicated specimen shape,special test fixture used,and 
stress concentration and eccentricity encountered during the testing.Therefore,far fewer data 
are reported for tensile strength than bend strength in ceramic materials. 

This paper reports the tensile strength data of Y-TZP materials tested by a newly 
developed method with a rectangular bar6

• The statistical variations of the tensile and three­
point bendstrengths are quite different from each other and may be quantiatatatively analyzed 
by a multimodal Weibull distribution.An approximate formation for such a two-modal Weibull 
distribution function obtained from the measured tensile and three-point bend strengths is 
described. 
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H. Experimental Procedure 

TZPs containing 2.0,2.5,and 3.0 mol% YzOa and 0.1 and 0.5 wt% Al20a were formulated. The 
materials studied are shown in Table I. The powder of sample A was prepared by the thermal 
decomposition method9

• Sample A was prepared by pressureless sintering and hot isostatic 
pressing methods as previously reported9

• 

TI1e sintered material was cut with a diamond saw and ground with a 400-grit diamond wheel 
to the dimensions 10 mm by 1 mm by 170 mm,and 4 mm by 3 mm by 36 mm,for the tensile and bend 
tests, respectively. 

The three-point bend test was conducted using a support spun of 30 mn1 and a crosshead 
rate of 0.5 mm/min. The four-point bend test was conducted using a support spun of 30 mm and a 
load spun of 10 mm. The crosshead rate of the four-point bend test was 0.5 mm/min. 

The tensile test was performed using the specimen bonded by glass-fiber-reinfor-
ced plastic(GFRP) tabs with an epoxy adhesive on the rectangular TZP plate,as shown in Fig.l 8

• 

To ensure alignment of the tensile specimen as it was fractured, two strain gages (A and A) 
were attached on one side,and a third strain gage (B) was attached on the other side. The tens 
ile test was performed using a universal test machine at a crosshead rate of 0.5 mm/min. All 
strength tests were done at 23"C and 50% relative humidity. Fracture surface was exan1ined with 
scanning electron microscopy and electron probe microanalysis (SEM-EPMA). 

m. Results and Discussion 

(1) Tensile Test 
Figure 2 shows the stress-strain curves of the tensile test specimen attached to three­

strain gages (A,A., and B). Similar curves are obtained. Table ll shows the tensile breaking 
strain of sample A, where the breaking strains £A" £Az,and ea are obtained by three straingages 
,A,,A2,and B,respectively. 

The stress eccentricities in the.dircction of depth and width of tested specimens are 
small,since the mean values of leh,- £,\21 /le."+ £.-.al and leA- e~l/ leA+ enl are 0.03 
and 0.01, respectively. Therefore, the effect of bending mode 011 the te11sile strength will be 

small". 

(2) Tensile and Bend Strengths 
Test results of tensile and three-point bend strengths of sample A are shown in Table m. 

The mean value of the tensile strength is much lower than that of the three-point bend 
strength,and the coefficient of the tensile strength is larger than that of the three-point 
bend strength. 

The strength of brittle material is often analyzed by the Weibull distribution function 1
-

3 

• The fracture probability can be given as 

F(u) ~ 1 - exp [ - V ( ---- )m ] (1) 

Oo 

Where F(o) is the fracture probability to a stress a, uo the scale parameter, V the effective 
volume", and m the shape parameter known as the Weibull modulus. 
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Figure 3 shows the Weibull plots of the tensile and three-point bend strengths for sample 
A. The following estimator is used to calculate the fracture probability,F 2

· 
3 

• 

.i - 0. 5 
F = (2) 

n 

where i is the rank of the the strength value and n the total number of the specimens. 
A distribution of the three-point bend strength can be expressed approximately by the 

dotted line, !,of the one-modal ~leibull fdiztribution ftmction Fu(u) and then given by replac­
ing the exponential term in Eq. (1) by [ - (u/1650) 12

]. 

TI1e effective volume of the three-point r~nd test becomes 1.1 mm~ from Eq. (A-4) shown in 
the Appendix,since the Weibull modulus m, is 12 and the volume,Vo of the specimen between two 
support is 360 mm. The effective volume of the tensile test is also given as 500 mm3

• 

The distribution furition of the tensile strength FT (u) estimated from Fu(u) can be 
expressed as [ - ( u/990) 12 

]. 

However, solid line,ll,so calculated does not agree with the curve of the measured tensile 
strength values as shown in Fig.3. Although the distribution of the three-point bend strength 
appears to be a one-modal Weibull distribution function as shown in curve !,one could not 
simply predict the tensile strength of the material having a larger volume. Distribution curve 
m of the measured tensile strength cannot be simply expressed by one-modal Weibull distribu­

tion. 
In the following sect~on,the distribution curves of the tensile strength of sample A can 

be analyzed by multimodal Weibull distribution. The relationships between the tensile and bend 
strengths are examined. 

(3) Strength Analysis by Multimodal Weibull Distribution 
Fract.ure surfaces of the tensile test specimens are examined in order to identify the 

fracture origin by SEM-EPMA. Two types of fracture origins are classified in sample A. 
Figure 4 shows the two kinds of fracture origins,classlfied as inclusion and unknown. 
The fracture caused by the unknown type initiates not only at the surface but also inside of 
the specimen. Therefore, the fracture causes will be treated as a volumetric defect. 

The individual fracture probabilities are estimated by the Johnson method 2
• 

10
, 

which determinesthe ranking number for the strength by calculating a new increment as soon as 
one or more censored strengths are encountered in the data. 
This new increment, A, is 

(n +1) -
A = (3) 

1 + J 

where i is the previous ranking and J the number of specimens beyond the present censored 
set. The new ranking is then given by simply adding the calculated new increment to the 
previous ranking. 
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Figure 5 shows the Weibull plots for the individual strength distribution. Each strength 
distribution, FTt, and FTz is approximately by straight lines I ruld n where Eq. (1) may be 
rewritten such that the exponential term is given by - (a/930) 2· 7 and- (a/950) 12· 3,respecti-
vely. In a situation where the populations of the two defects exist concurrently, the overall 
fracture probability, F,is the product of the two individual fracture probabilities: 

F (a) = 1 - [ 1 - F 1 (a)] [1 - F z (a)] (4) 

where Ft(a) and Fz(a) are the fracture probabilities associated with the defectes of types 1 
and 2, respectively. Equation (1) and (4) yield 

a 
F(a) 1 - exp[ - V1 ( --)"' 1

- V2 (--)"'
2 ] (5) 

Substituting for Eftand Fr~ives 

a u 
1 - exp[- ( --)•· 7_ ( --)12. 3] (6) 

930 950 

where F~o) is the two-modal Weibull distribution function the tensile strength of sample A. 
Then, the strength distribution function given by Eq.(7)for sample A at the different 

effectve volumes can be obtained from Eqs. (5) and (6) when Vt and Vt equal 50Q noo3
• 

u u 
1 - exp[ - V, (---)2. 7-Vz ( ---)12. a] (7) 

9080 1580 
The individual effective volumes for the three-point bend strength,Vt and V2 ,are 

calculated from Eq. (A-4) in the Appendix. Substituting the calculated V1 and V2 in Eq. (7) gives 
the distribution function of the three-point bend strength: 

u u 
Fn(u) 1 - exp[ -(--- )2· 7 -(-- )12. 3] (8) 

3560 1570 
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Figure 6 shows the distribution curves calculated from Eqs.(6) and (8). The estimated 
distribution curves n for the three-point bend strength agrees well with the measured values. 
The different behaviour of the tensile and three-point bend strengths can be explained 
quantitatively by a two-modal Weibull distribution. 

Figw·e 7 shows the strength distrilmtion curves calculated from Eq. (7) for the various 
sizes of sample A under uniform tension. The effect of the inclusion having a small Weibull 
modulus increases as the volume of the specimens increases. On the other hand, the effect of 
the unknown origins having the larger Weibull modulus increases as the size of the specimen 
decreases. ln both cases, the strength distribution function appear to be one-modal Weibull 
distributions, although the two Weibull modului are different from each other an shown in 
Eq. (7). Thus, a multimodal Weibull distribution can be easily misinterpreted as one-modal 
perfect population. 

Therefore,i.t may be difficult to detec:t the dangerous defects with low frequency by the 
three-point bend test since the effective volume of a three-point bend test is very small. 
Both tensile and bend tests having different effective volumes can be utilized appropriately 
to realize the presize strength distribution,such as two-modal Weibull distribution. 

Strength analysis by multimodal Weibull distribution gives quantitative suggestion of tl1e 
improvements of materials. The distribution function,Eq.(6),for the tensile strength bacomes 
FT2 when the inclusions are eliminated. Substituting the Weibull modulus ~ and scale 
parameter Uo of FT2 into Eqs. (A-2) and. (A-3) in the Appendix gives the inproved mean value, a, 
of 910 MPa and a coefficient of variation,CV,of 10%,respectively. 

N. Conclusions 

The strengths of Y-TZPs are quantitatively analyzed by a multimodal Weibuu distribution 
function. The follov1ing conclusions can be drawn from this study: 

(1) Concurrent defects such as pores,machining flaws,agglomerates,cubic phase,silica and 
alumina inclusions,and alumina inclusions control the strength. 

(2) It is dangerous to use the data of bend strength to predict the size effect. 

Appendix 

One-Modal Weibull Distribution Analysis 

The strength of brittle material can be analyzed by the Weibutl distribution function. 
The fracture probability can be given as 

F(a) = 1 - exp[ - V( ------ )• ] (A-1) 

ao 

where F(a) is the fracture probability to a stress a,ao the scale parameter, V the effective 
volume, and m the shape parameter known as the Weibull modulus. The mean a and the 
coefficient of variation of the strength,CV, are given by 



1 
a = ao v- 1 /m r( -- ) 

m 

r ( 1 + 2/m ) 
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CV [ ------- 1 ] 1
/ 2 X 100 (%) 

r2 
( 1 + 1/m ) 

(A-2) 

(A-3) 

where for a specimen under uniform tension, the effective volume V is the tested specimen 
volwne. 

In the case of the bend test,a stress gradient exists in the speci~Jl. The effective volum 
e,V,for the three-point bend strength is given by 

v. 
V (A-4) 

2(m + 1) 2 

where Vo is the volume of the specimen between two supports. The effective volume of the four­
point bend strength tested with a load spun of one-third of a support span is given by 

m + 3 
V Vo (A-5) 

6(m + 1 ) 

where Vo is the volume of a. specimen between two supports. 

Acknowledgements 

The authors are grateful to Prof. 1'1. V. Swain of Sydon.v University for his l1elpful 
discussion. ThaJJ.ks a.re also due to Y. Noda and S. Nakayarna of Toray Industries,lnc., ?.nd 
M.Fujita and Y.Matsuda of Toray Research Center,Inc.,for sample preparation and mechanical 
testings. 



44 

References 

1. tUieibull, "A Statistical Distribution Function of Wide Applicability," J. Appl.Mech.,18, 
293-97(1951). 

2. C.A.Jhonson,"Fracture Statisitics of Multiple Flaw Distribution";pp.365-86 in Fracture 
Mechanics of Ceramics, Vol. 5. Edited by R. C. Bradt, A. G. Evans, D. B. H. Hc.sselmnn, and F. F. tange. 
Plenum Press,New York,l983. 

3. D.G.S.Davies,"The Statistical Approac:h to Engineering Design in Ceramics," Proc.Ceram.Soc., 
22, 429--52(Ul73). 

4. L. W. Stephi:ms and ~1. V. Swain," Tensile Strength and Notch Sensitivity of Mg-PSZ"; pp.163-73 
in Fracture Mechanics of Ceramics, Vol. 8. Edited by R. C. Bradt, A. G. Evans, D. B. H. 1-lasselman, 
and F.F.Lange. Plenum Press,New York,l986. 

5. Y. Fujisawa K. Matsusue, and K. Takahata, "Tensile Strength of Engineering r.eramics," 
J.Soc.Mater.Sci. Jpn.,34[379]1112-17(1985). 

6. T. Tanaka and A. Sakaida," Tensile Testing of Silicon Nitride Plate Specimens," J. Soc. Mater. 
Sci. Jpn. , 34[379 ]461-67 (1981). 

7. T.Ohji," Tmvards Routine Tensile Testing," Int.J.High Tech.uol.Ceram.,4,211-25(1985). 
8. K.Noguchi,M.Fujit..a,T.Masaki, and M.Mizushina," Tensile Strength of Yttria-Stabilized 

Tetragonal Zirconia Polycrystals," J. Am. Cerrun. Soc., 72[7]305-307(1989). 
9. T.Masaki," Mechanical Properties of Toughened ZrO.-Y20a Ceramics," J.Am.Ceram.Soc.,69[8] 

638-40(1986). 
10. L. G. Johnson, The Statistical Treatment of Fatigue Experiments. Elsevier, New York, H!64. 



-~· 

" 
"' c.. 

::£ 

U! 

1000 

U! 500 
V 
I. 
... 
U! 

45 

12 

f] 
170 

-=-'' 
so 

•I 

Ceramic 

train Gauges 

Fig.l Tensile test specimen. 

o.z 0.3 0.4 

strain(") 

(mm) 

I ! ~ 

., J-

tab 

0.1 . 0. 7 

Fig.Z Stress-strain curves of sample A obtained by attaching three 

strain gages (Al, AZ, and B). 



46 

Table I. Materials Used in Work 

Composition Sintering temp. 
("C) Density 

Y20a AbOa 

Sample (mol%) (wt%) Powder preparation method PS" (g/cm) 

A 2. 0 0. 5 Thermal decomposition 1400 1400 6.09 

* PS is pressureless sintering. + HIP is hot isostatic pressing. 

Table n. Breaking Strains of Sample A 

- £Al + £A2 £A I - £A2 I£ A - en I 

Specimen tAl tA2 £n -----
No. (%) (%) 2 (%) £A I + £A2 £A + £n 

1 0.459 (0.459) 0.460 (0.001) 

2 0.417 0.393 0.405 0.393 0.03 0.02 

3 0.512 0.464 0.488 0.488 0.05 0.000 
4 0.306 0.280 0. 293 0.296 0.04 0.005 

5 0.524 0.512 0.518 0.517 0.01 0. 001 

6 0.464 0.441 0.453 0.445 0.03 0.002 

7 0.126 0.114 0.120 0.116 0. 05 0. 02 

8 0.443 0.422 0.433 0.427 0. 02 0.007 

9 0.391 0.391 0.391 0.386 D. 000 0.006 
10 0.282 0.284 0.283 0.289 0. 003 0. 01 

Mean 0.39 0.37 0.38 0.38 0. 03 0. 01 
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Fig. 3 Weibull plots for sample A. Dotted line I reveals the 

distribution of three--point bend strength given by F0 (u). 

Solid line a represents the tensile distribution calculated 

from F,.(o). 
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Fig. 4 Typical fracture origins of sample A. 
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Fig.5 Weibull plots for fracture origins. Fracture probabiliLies are 
determined by the Johnson method. Straight lines 1 for inclusion 

and n for unknown are by Fn and Fn, respectively. 
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Table 11. Tensile and Three-Point Bend Strengths of ZY-TZP 

Mean 
(MPa) 

745 

Tensile 

cv+ 
(%) 

29 

n• 

10 

Three-point bend · 

Mean 

(MPa) 

1630 

CV 

(%) 

10 

n 

17 

+ CV is coefficient of variation. * n is number of tested specimens. 
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Fig.7 Distribution curves calculated from Eq. (7) for different effective 

volumes of sample A. Thick line represents the distribution of 

tensile stre~1t tested at the volume of 500 mm3 in the present work. 




