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ABSTRACT 

Lattice vibration effect is incorporated into the 
conventional first-principles scheme based on the Debye­
Gruneisen model, and the phase diagram of GaP-InP pseudo-binary 
system is calculated. The obtained phase diagram is not 
significantly modified by the lattice vibration effect. 

1. INTRODUCTION 

Designing of a semiconductor alloy with optimized 
properties is one of the central concerns in advanced 
technologies. In view of the numerous combinations of Ill-group 
and V-group elements, it is desirable to develop a non­
empirical scheme to predict a phase diagram of a given system. 

We note two major streams in this direction. One is the 
"semi-empirical" scheme in which experimental data are utilized 
in the mold of a simple thermodynamic model. CALPHAD method 
[1] is one of the typical examples in this category. The key 
element of this method is the thermodynamic data bank of which 
contents are constantly updated. Since the mathematical tool is 
based on a simple thermodynamic model, the extension of the 
method to a complicated system such as a multi-component system 
or a system with a non-cubic structure is fairly easily 
achieved. The method, however, heavily depends upon the 
reliability and quality of existing experimental data. Hence, 
when the data are not available as in the case for which the 
equilibrium condition is hardly achieved, the method would face 
serious difficulty. 

The other method is "non-empirical" scheme which is founded 
on rigorous principles of physics with minimum input of 
adjustable parameters and experimental data. The extreme case 
in this category is the "first-principles calculation" in which 
the inputing parameter is limited only to an atomic number of 
constituent elements. The mathematical procedure is, in 
general, quite sophisticated and consists of two major 
computational steps; one is to calculate the internal energy of 
the system based on quantum mechanics and the other is to 
obtain an entropy term based on statistical physics. Since the 
model can be operated without any empirical data, the method 
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can be applied to any condition to which conventional 
experimental technique is hardly accessed. In fact, global 
investigation of a phase diagram [2-6] was recently carried out 
for a series of pseudo-binary III-V semiconductor alloys based 
on the non-empirical method, and the possible origin of an 
ordering reaction observed in a thin film on a substrate 
materials [20-22] has been partly elucidated. 

Most of the first-principles calculation of the phase 
stability conducted so far [2-9], however, have assumed a static 
lattice. The description of the free energy of the system is, 
therefore, based only on atomic configurational contributions, 
and vibrational effects are not explicitly incorporated. Since 
the lattice vibration is closely related to the lattice 
softening (or hardening) through thermal expansion, the neglect 
of this effect may result in an error in calculated 
thermodynamic quantities such as solubility, transition 
temperature etc. and, hence, a phase diagram. 

Although various sophisticated theories of the lattice 
phonon have been advanced most of them are not compatible with 
the present framework of the first-principles calculation. In 
contrast, Moruzzi et al. [10] calculated Debye temperature, Bulk 
modulus, Gruneisen constant etc. of a pure metal based on the 
simple Debye-Gruneisen model, and this was later extended to an 
alloy system by Becker et al. [11] to derive a phase diagram of 
Nb-Ru-Zr from the first-principles. 

The major objective of the present study is to derive a 
phase diagram of a III-V semiconductor alloy by including the 
lattice vibration effects. As an initial attempt, our interest 
is limited to GaP-InP system and main focus is placed on the 
comparison with the one previously obtained without the 
vibration effect. Detailed discussions of the obtained results 
will be reported in a separate issue. The organization of this 
report is as follows. In the next section, brief outline of the 
theoretical background is introduced. Since the major technique 
of the first-principles calculation has been amply demonstrated 
in the previous reports [2-9] and the details of the lattice 
vibration effect are also reported by Moruzzi et al. [10], 
only the essential parts are reproduced. The reader interested 
in the mathematical details should consult the previous papers 
cited as references. The calculated results are demonstrated and 
discussions follow in the last section. 

2. CALCULATION PROCEDURES 

Many of the III-V semiconductor alloys have zincblend 
structure which is viewed as two fee lattices, one is occupied 
by Ill-group elements only and the other by V-group elements 
only, displaced from each other by one-quater of a body diagonal 
as is shown in Fig.1. The space lattice is fee, hence the 
pseudo-binary phase equilibria of III-III-V (III-V-V) is 
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virtually regarded as the binary 
phase equilibria of Ill-Ill (V-V) 
system on a sublattice immersed in 
the environment of V(III) group 
element. The techniques 
developed for the fee system can 
be, therefore, directly extended. 

The first-principles method 
strats with the total energy 
calculation Ei(r) of a set of 
selected ordered compound 
specified by i as a function of 
lattice parameter r. The ordered 
compounds adopted in this study are 
Ga4P4 (i=O), Ga3InP4 (i=1) and 
Galn3P4 (i=3) with L1 2 structure on 
the cation sub-lattice, Ga2In2P4 
(i=2) with L1o structure on the Fig. 1 
same sub-lattice and In4P4 (i=4). 

For the semiconductor alloys, it has been well accepted 
that the pseudopotential method [12-14] is quite reliable to 
yield the total energy at the ground state. Based on the 
calculated ground state energy Ei(r), the free energy of phase i 
at finite temperature T can be written in the following 
manner[10]. 

where 00 is the Debye temperature which is the function of 
Gruneisen constant and lattice parameter r, and D(x) is the 
Debye function. It should be noted that the advantage of the 
method proposed by Moruzzi et al. is that all the parameters 
involved in the equation above are systematically derived only 
from the knowledge of the electronic energy contribution Ei(r). 

The next step is the employment of the Connolly-Williams's 
Cluster Expansion Method [15] operating on Fi(r,T) to derive the 
effective interaction energies Vj(r,t) of j-point cluster. 
Since the total energy calculation is performed for the five 
kinds of ordered compounds, five types of effective interaction 
energies Vj(r,T), where j takes 0,1,2,3 and 4, are extracted. 
It is easily shown [16] that vo is the energy of the random 
solid solution at 50%, while vj {j~O) is the effective 
interaction energy for j-point nearest neighbor cluster. 

For the calculation of a configurational entropy term, the 
Tetrahedron-Octahedron approximation [17,18] of the Cluster 
Variation Method [19] is employed. Then, together with the 
effective interaction energies {vj (r,T)}, the free energy of 
the system ~ is given as the function of lattice constant r, 
temperature T and ten kinds of correlation function {~j} which 
describe the local atomic order [17]. 
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(2) 

The equilibrium state of the system is, therefore, obtained by 
minimizing the free energy with respect to both lattice 
parameter r and the set of correlation function {~j}. 

<ar~/ar){c;.}=O 
J 

and (dQ/(1{~.}) =0 
J r 

(3) 

Finally, the mechanical stability of the system is examined 
by calculating the second order derivative of the Q with respect 
to the lattice constant r, which leads to the pressure-volume 
curve at temperature T. When the mechanical stability criterion 
is observed the system is stable with respect to the small 
volume fluctuation, while the system becomes inherently 
unstable and decomposes into two phases if the criterion is 
violated, which is indicated by a change of the sign of the 
slope of the pressure-volume curve. By converting two stable 
volumes to the compositions, one can obtain the phase 
boundaries. The repetition of this procedure for each 
temperature produces the phase diagram. 

3. RESULTS AND DISCUSSIONS 

The calculated heats of 
formation for the five kinds 
of ordered compounds are 
demonstrated as a function of 
lattice parameter r in Fig.2. 
For each compound, the dotted 
curve indicates the electronic 
energy at the ground state 
Ei(r), while the solid curve 
represents the free energy at 
temperature T=500K. The 
lattice parameter 
corresponding to the minimum 
of each curve is equilibrium 
lattice constant r 0 for each 
phase. Two important features 
should be noted. One is that 
the heats of formation 
decreases due to the 
vibrational entropy 
contribution. The other is 
that the minimum of each curve 
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shifts toward the right hand side, which suggests the thermal 
expansion. The thermal expansion coefficient which is defined as 

a(T)=(l/r 0 )(dr 0 /dT) (4) 

is calculated as a function of 
temperature for the binary 
ordered compounds and plotted 
in Fig.3. One can see that 
each curve demonstrates 
typical thermal expansion 
behavior i.e. a rapid raise in 
the low temperature region 
then linear increase in the 
high temperature portion. It 
is confirmed that the 
experimental values agree with 
the present results at least 
within the order of the 
magnitude. 

Figure 4 indicates the 
effective interaction energies 
obtained by Connolly­
Williams's Cluster Expansion 
Method. The {vj(r)} at T=500 
and the ones extracted from 
the set of electronic energies 
{Ei(r)} are shown by solid and 
dotted ~ines, respectively. 
It is noted that the v 0 and v1 
shift towards the right hand 
side due to the thermal 
expansion while pair 
interaction energy v 2 stays 
the same level. For the III-V 
systems, the multibody 
interactions v3 and v4 are 
quite small as compared with 
v 0 , v1 and v2 , which satisfies 
the convergency criterion of 
the Cluster Expansion Method. 

The obtained phase 
diagrams are demonstrated in 
Fig.5. The dotted curve is 
the previous result calculated 
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As was pointed out previously [2-6], the origin of the 
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phase separation is the large 
elastic energy involved to 
form an alloy due to the size 
misfit of the constituent 
binary ordered compounds. In 
fact, the total heats of 
formation of the random solid 
solution is separated into the 
elastic energy contribution 
and chemical energy 
contribution by the method 
described in the previous 
reports [2-6] and 
demonstrarted in Fig.6. Shown 
by solid lines and broken 
lines are ones estimated, 
respectively, at lOOOK and 
based only on electronic 
contributions. For both 
cases, one can immediately see 
that the positive value of the 
total heats of formation is 
caused by the large elastic 
energy contribution which 
cancells the fairly large 
chemical driving force. It is 
noted that the thermal 
vibration effect does not 
affect each energy 
significantly, which is 
reflected in the calculated 
phase diagram in the Fig.5. 

The large chemical energy 
implies that the system has 
intrinsically large driving 
force for the formation of 
solid solution. According to 
recent X-ray and electron 
diffraction studies, ordered 
phases have been observed for 
various III-V systems 
constrained on a substrate 
[20-22]. Although the orgin 
of the ordereing reaction 
should be considered based on 
various factors such as a 
surface effect and kinetics 
during growth, the energetics 
demonstrated in Fig.6 implies 
that if the elastic energy is 
relaxed by a certain 
mechanism, the chemical energy 
becomes dominant and the 
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mixing reaction becomes feasible. In fact, more detailed 
analysis including second nearest neighbour pair interaction 
reveals [3] that the formation of the L~ ordered phase is more 
stable than those of random solid solution and L~ ordered phase 
for GaAs-InAs system, which agrees with the experimental fact. 

It has been pointed out [2-10] that the major deficiencies 
of the first-principles calculation conducted so far is the 
neglect of the local lattice distortion effect. If only a 
uniform distortion depending upon an alloy concentration is 
allowed, a solute element is forced to have an equivalent size 
of host element, which unnecessarily raises the internal energy 
and solubility is unreasonably suppressed. Such an error is 
anticipated to become serious for a system which has large 
difference in atomic size of constituent elements. 

The theory of the relaxation energy due to the local 
distortion is proposed by Khachaturyan [23] based on the 
harmonic approximation of lattice dynamics. According to this 
method, the essential quantity required to evaluate the 
relaxation energy is the Dynamical matrix which is, in 
principle, derived from phonon dispersion relation. The major 
stumbling block, however, is the fact that the local distortion 
alters the crystal symmetry and the conventional CVM for a cubic 
system is broken down for the locally distorted lattice. 
Moreover, the harmonic approximation does not leads to the 
thermal expansion. The method adopted in the present report, on 
the other hand, incorporates the lattice softening due to the 
thermal expansion within an approximation of uniform lattice 
displacement. Hence, the extra internal energy evaluated for a 
unifromly displaced lattice based on the electronic contribution 
at the ground state alone is, at least, partly relaxed. We 
believe that the most accurate result will be yielded by 
incorporating the local distortion effect in the vibrating 
lattice. This remains as a future work. 
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