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ABSTRACT 

We propose a new force operator, -ifia2;atax , which is obtained from 
time-differentiating of momentum expectation of a quantum particle. If this 
operator is worked to plane-wavefunction, force expectation, -inkW , is 
obtained. We call this force expectation 'marion force'. Application of the 
marion force is proposed as a concept which is able to be understood easily 
and intuitively when mechanical property of mechanical materials is 
analyzed. The marion force is calculated as a function of electron density 
in free-electron solids. Average pressure from this marion force is 
proportional to five-thirds power of electron density. This pressure is in a 
good agreement to virial pressure which is obtained thermodynamically from 
average energy of free-electrons. In normal metals, there is out-direction 
pressure more than 100 gigapascal without any pressure from outside. This 
pressure is cancelled by Feynman force which is induced by Coulomb potential 
worked between a valence electron and a positive ion. In a stationary state 
we think this Feynman force and the marion force are balanced. 

Introduction 

Basic force which causes deformation, fracture, cohesion, friction, 
abrasion, crystalline phase transition, etc., of solid materials, is only the 
electromagnetic interaction. Binding force between atoms is created by a 
change of momentum state: energy of valence electrons which are outmost 
electrons of an atom. It is a well-known method to calculate crystalline 
energy as a function of lattice distortion, when we evaluate mechanical 
properties of solids. Especially, for metals and semiconductors there are 
many calculated results by the pseudopotential method [1-3]. Once we obtain 
the calculated results of energy, we can apply results these to questions of 
elastic deformation; phonon spectra; phase transition stress; ideal fractural 
strength, within the structure of thermodynamics and classical mechanics, and 
based on the dislocation theory, to plastic deformation; creep phenomena; 
mechanisms to toughen materials [4-7]. 

Furthermore, if it is able to calculate 'force' directly from the motive 
state of electrons, it is very intuitive on evaluating the mechanical property 
of solids and very useful to discuss the property of deformation and fracture 
strength, which is affected by shear stress. And to discuss the property of 
solids which has mechanical anisotropic strength. On this paper, We propose a 
new method and a 'force' operator which is led from the differential of 
momentum expectation value. We discuss force expectation which is obtained 
when this operator is worked to a wavefunction. And we apply this method to 
free-electron solids, calculate pressure and compare with pressure which is 
led from the normal virial theorem. 

A new force operator 

The time derivative of momentum p of a moving particle is force F, which 
is supplied for surrounding field. 
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F = ..J!L (1) 
dt 

If a quantum momentum operator; defined as -i~ ( fi is Planck's constant and 

i is imaginary unit. ) is worked to a wavefunction W , expectation of momentum 
<p> is 

<p> Iw*c -i~)w dx 
"' 

<wlplw> • (2) 

A time-derived function of (2) is 

"' 
d<p> = <aw 

1
"' 

1 
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1
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1 
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Since p is an Hermite operator, the first and the third term are able to be 
rewritten to 

aw
1
"'

1 
aw

1 <at P w> = <p><at w> (4) 

and 

1
"'

1
aw 

1
aw <w P at> = <p><w at> (5) 

From normalized condition of the wavefunction, 

<wlw> = 1 (6) 

is given. Hence a time-derived term of the wavefunction is 

a<wlw> = <awlw> + <wlaw> 
at at at 

(7) 

""0 • 

Thus, only the second term is remained on the right-hand side of the equation 
(3) • 

d<p> - <wl 
dt -

<wl 

lP. lw> at 
a2 

-iliatax lw> 

We define the equation (9) as a new force operator F 
a2 

F = -ili atax 

Force expectation is 

"' 
<F> <wiFiw> 

* a2 
fw ( -ili atax )W dx . 

We give a name 'marion force' to this force expectation. 

(8) 

(9) 

(10) 

Until now Feynman's method is known as a force operator to obtain force 
which interacts on quantum particles [8]. Feynman force operator is defined 
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as follows. Hamiltonian H works ~o particle-system moving in a pot~ntial 

field V. As H equals T + V, where T is a kinetic energy operator and V is a 
potential energy operator, expectation of energy is 

Force F defined by thermodynamics is 

-ou 
F = Tx 

A space-derived function of <U> becomes 

o<U> 
1 

oH 
1 ---a;- = <w ox w> 

A 

I 
ov 

1 <w ox w> 

This operator, - ~~ is defined as Feynman force operator. 

(11) 

(12) 

(13) 

When this operator 

is worked to a wavefunction, force expectation <F> is obtained. 

<F> = fw*c- ov )w dx ox (14) 

This potential force <F> is called Feynman force. In a stationary state we 
think that this Feynman force FF and marion force FM, defined by the formula 

(10), are balanced. 

Applications and discussions 

1. Quantum free particles 

Assume a wavefunction of a quantum particle is approximated to a 
planewave as 

lj; = exp [i(kx-wt)] (15) 

where k is a wavenumber and w is an angular frequency. If it is operated by 
the marion force operator, the following equation is obtained as marion force 
FM from the formula (10). 

FM = -ilikw (16) 

Kinetic energy U of a particle of which mass is m, is 

(17) 

and 

U = fiw (18) 
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The marion force FM is represented by the following equation as a function of 

u. 

(19) 

For a photon, c is the velocity of light and k is equal to ~ , the marion 
c 

force is 

(20) 

For example, we show results of a photon, electron, proton and carbon ion in 
Figure 1. These mean the force when a moving particle is stopped quickly ( of 

1 which time is an order of -w-• and the force diverges to infinite in the 

classical theory. or the force of the maximum when the moving particle 
transfers force to environmental field. 
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Figure 1. Marion force of free particles such as a photon, electron, proton 
and carbon ion. 

We think that the marion force will become an interesting concept about 
mechanical analyses in rarefield gas and plasma gas motion; thin and multi
layered film production by sputtering; ion plating; particle milling. 

In case of an electron of hydrogen, moving in periodic orbit with Coulomb 
attraction, a centrifugal force FR is 

mrw2 = Fikw (21) 

where r is a orbital radius in Bohr model. This FR is consistent with the 

marion force FM. Wavenumber k is 

where n 
discrete 

n 
k = 27Tr 

is an integer not equal 
value, the marion force 

zero. As 
is also 
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the wavenumber is represented 
discrete eigenvalue. On this 



condition, Feynman force FF is able to be obtained from the equation (14) by 

using Coulomb potential V, and must be balanced with the marion force. There 
is the same discussion about valence electrons in free-electron model (which 
potential V is zero in one region, otherwise infinite.) of metals or 
semiconductor when the condition (22) with cyclic orbit is regarded as 
periodic condition for a wavefunction. 

2. Free-electron solids 

There are N valence electrons in a metal of which volume 
potential V is zero: we use free-electron approximation. Energy 
electron with a wavevector l is from the equations (17) and (18) 

l::Zin.l2 
U = ~ = fiw • 

The marion force for X-direction FMx is from the equation (16) 

F = -ifi
2 

lli 2k 
Mx 2m x 

is n : a 
U of an 

(23) 

(24) 

where k is wavenumber for X-direction. The total marion force F of 
X 

electrons which has positive kx for X-direction and less than the Fermi energy 

in a k space is 

(25) 

It is rewritten to spherical coordinates. 

(26) 

U . 1 1 d · N s1ng va ence e ectron ens1ty ~ Fermi wavenumber kF of free electron 

solids is 

(27) 

It is obtained that all marion force FM for one direction, substituting this 

in (26). 

(28) 

The average rnarion force fM for each electron is 
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It is . proportional to valence electron density ~ 
out direction which is given by the marion force is 

(29) 

Thus, pressure PM for 

(30) 

We also call this pressure 'marion pressure'. Otherwise, the average energy u 
for each electron of free-electron solids with Fermi energy uF is 

(31) 

This pressure Pv called virial pressure, which is obtained thermodynamically 

is represented 

p 
V 

(32) 

We show both pressure as marion pressure and virial pressure in Figure 2. 
There is a few difference between both data. We think that it comes from a 
difference between average of force and average of energy. Anyway, in normal 
metals in which electron Fermi energy is about 10 eV, there is out-direction 
pressure more than 100 gigapascal without any pressure from outside. This 
pressure is cancelled by Feynman force which is induced by Coulomb potential 
worked between a valence electron and positive ion: the valence electron is 
trapped inside the metal. 
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Figure 2. Marion pressure and virial pressure as a function of electron 
density of free-electron solids. 
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Introducing periodic potential-field by arrange of positive ions, the 
marion force of the valence electron has a band gap at Brillouin zone 
boundary like energy band structure of a solid-state electron. Thus, we can 
think force band structure with the formula (16). We think this force band 
structure will be a most important in electronic solid-state property like an 
idea of energy band. For example, from the idea of the force band gap, it is 
obtained an knowledge about stress in crystalline zone boundary; stress of 
contact between different materials; surface tension; fracture of brittle
ductility. This directive method is useful and fruitful when problems 
approached by an idea of energy are too confused, such as the property of 
fracture of metal; semiconductor; ceramics, brittle-ductility transition with 
pressure or temperature, hydrogen brittle, etc. 

Conclusions 

We proposed a new force 
a2 

operator, -ifiotox , which is obtained by time-

deriving the expectation <p> of momentum of quantum particles, operates as the 
force operator. When this operates to a plane-wavefunction, expectation of 
force <F>= -inkw is obtained, and we call this force 'marion force'. 

We also calculated the marion force as a function of electron density in 
free-electron solids, and obtained average force fM for one-direction for each 

electron. 

From this force, average pressure PM is 

It is proportional to five-thirds power of electron density. It almost agrees 
quantitatively with virial pressure which is obtained from thermodynamical 
average of energy of free electron. 

We propose application of force band 
is understood easily and directly when we 
materials. Especially, we indicate that 

structure by the marion force which 
analyze solid property of mechanical 

an force band gap is an interesting 
idea. 
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