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ABSTRACT 

The collective dynamical aspects in the density-density 
correlation in classical monatomic liquids near the melting 
point, such as is reflected in the non-Markov characters of the 
velocity autocorrelation function of a constituent atom, are 
investigated through the molecular dynamics simulation of several 
space-time correlation functions defined with the group-velocity 
of local aggregation of atoms. 

It is shown that the thermal motion of an atom is very 
coherent with those of neighbouring atoms corresponding to the 
first-peak of the pair distribution function. The oscillatory 
tail in the velocity autocorrelation function after its negative 
minimum is the result of back-and-forth relaxation of the initial 
momentum between the central and surrounding "cage" atoms. These 
coherent characteristics can be considered corresponding to the 
quasi-phonon peaks found in the dynamical structure factor meas­
ured by inelastic neutron scattering. 

INTRODUCTION 

The thermal motion of atoms in a classical liquid has been 
shown well-correlated over a wide-range of frequencies as well as 
of wave-numbers through the measurement of the dynamical struc­
ture factor S(Q, ~ ), i.e. the space-time Fourier transform of 
the van Hove correlation function G(r,t) by the inelastic scat­
tering of thermal neutrons. Many theoretical studies have been 
devoted to understand such dynamical aspects of the density­
density correlation in liquid states from the microscopic point 
of view. The recent review article by Yoshida and Takeno [1] re­
ports on the present stage of theoretical studies on this sub­
ject. 

It should be emphasized that the computer experiments of the 
atomic properties of liquids, especially by the molecular dynam­
ics method (MD) have added great achievements to the statistical 
mechanical theory of liquids. Among others, the lecture-notes 
edited by Ciccotti et al.[2] is useful to survey fruitful appli­
cations of the computer simulation methods to liquids. 

Rahman [3] showed first by MD simulation that molten state 
of simple metals could be understood as classical monatomic liq­
uid with a suitable pairwise additive interaction potential 
between screened metallic ions. We have reported a series of MD 
simulations of liquid rubidium in the wide-range of temperatures 
and densities[4,5] on the basis of the pseudopotential theory for 
the electron-ion interaction in the metallic state, and shown 
that collective aspects in the thermal motion of rubidium atoms 
are significant near the melting point. In MD simulation, any 
single atom can be used as a probe to investigate such collective 
characteristics of atomic motions in liquid rubidium. 

In Fig. 1, we show the MD simulation of the velocity auto-
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correlation function (VAF) of a rubidium atom near the melting 
point [5], with its memory function (MF). 

The normalized VAF, if> (t) is defined by 

if> (t) = <V(t)V(O)>/<V2 >, (1.1) 

and its memory function, M(t) is defined through the generalized 
Langevin equation for VAF as 

d if> ( t) Id t + Jt M ( t- t ' ) r/> ( t ' ) d t ' = 0 . ( 1. 2) 
0 

According to the Kubo formula of VAF, the integral of r/> ( t) 
from t = 0 to infinity is equal to MD/kT, where D is the self­
diffusion constant and M the mass of rubidium atom. In Fig. 1, 
it should be emphasized that VAF has an oscillating tail after 
the negative minimum, and is quite different from the simple 
exponential decay with the time constant • = MD/kT, i.e. the 
dashed line denoted as Langevin. The memory function MF, M(t) is 
not the o -function but has a complicated t-dependence such as a 
recovery of memory in the intermediate renge of time as well as a 
long tail. These complicated features of VAF and MF reflect 
certain collective interactions between the probe atom and its 
surroundings. 

Yoshida and Takeno [1] have made a general discussion on the 
MF in the generalized Langevin equation by the continued fraction 
expansion method, i.e. in the framework of Mori formalism, but 
seems difficult to elucidate physical images of such collective 
thermal motions of atoms. 

The purpose of the present work is to investigate the char­
acteristics of collective motions of atoms through MD simulation 
of several space-time correlation functions of the group veloci­
ties of local aggregation of atoms, and to elucidate the origin 
of the negative minimum and the oscillating tail of VAF in Fig.1. 
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Fig. 1. VAF r/> ( t) of liquid rubidium near the melting point. 
w E 1 s the Einstein frequency, ;-M ( 0) . 
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GROUP-VELOCITY CORRELATION FUNCTIONS 

The velocity autocorrelation function in Fig. 1 
thermal relaxation of the momentum of a single atom, 
with the following initial conditions, 

t :: 0, V1 =V(O), ivj = - V(O). 
I 

shows the 
say No.1, 

(2.1) 

and the non-Markov characteristics of time dependence suggest 
that the initial momentum of the central atom is shared for t>O 
by surrounding atoms in well correlated way. We can define sever­
al space-time correlation functions for the local velocity-field 
to investigate the collective relaxation mechanism as is shown in 
Fig. 1. 

First we define the group velocity of atoms surrounding the 
central atom No.1 within the distance r as 

(2.2) 

where e (x) is the Heaviside step-function , and the number of 
atoms within the distance r including the central one is denoted 
as 

N(r;t) = r. e (r -IRj(t)- R1 (t)l ). (2.3) 

The velocity of the center of mass of the group of atoms and the 
total velocity of of atoms in the shell between distance r 1 and 
r 2 are thus given as follows; 

VG(r;t) = U(r;t)/N(r;t), (2.4) 

ue ( r 1 , r 2 : t ) = U ( r 2 ; t ) - U ( r 1 : t ) . ( 2 . 5 ) 

With these definitions of the group velocity of local aggre­
gation of atoms, we define the following three types of space­
time correlation functions denoted simply as the total GVCF, the 
inclusive GVCF and the exclusive GVCF as follows; 

total GVCF: w<t>(r;t) 

inclusive GVCF: 1Jf (i) (r;t) 

and 

<VG{r;O)VG(r;t)>, 

<V(O)U(r;t)> = <U{r;O)V(t)>, 

exclusive GVCF: 1Jf (e)(r1 ,r2 ;t) <V(O)Ue(r1 ,r2 ;t)> 

<Ue(r1 ,r2 ;D)V(t)>. 

(2.6) 

(2.7) 

( 2. 8) 

The physical meaning of these correlation functions is clear 
and we expect to deepen our understanding about the collective 
aspects of thermal motion of atoms in classical liquid. In the 
next section we show the results of MD simulation of these corre­
lation functions in liquid rubidium. In MD simulation the ave­
rage over thermal equilibrium states denoted by < > in the above 
definitions is calculated by sampling of the initial time t = 0 
from the steady MD records as well as by taking all atoms of the 
MD system as the central atom at that instant. 
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MOLECULAR DYNAMICS SIMULATION OF THE GROUP VELOCITY CORRELATION 
FUNCTIONS 

The liquid state of rubidium 
(Rb)(Tm = 311K) at 311.7K and 

1.502gcm-3 is simulated by the 

3.o g(r) Rb. 311.7K 
1.502g.cm-3 

system of 864 neutral pseudo-atoms 2.01---tt---------­
with the mass of rubidium atom and 
the effective pair potential using 
the microcanonical MD method. 

Details of the simulation and 1.ol-----'-f--\---J'--".-T-~~--­
the effective pair potential can 
be found in [4}. The MD calcula­
tion of the pair distribution func­
tion g(r) of liquid Rb at this 
temperature is shown in Fig. 2, 
and is found in good agreement with 
the experimental data. 

L--~~--~~--~~--~~r.A 0c) 5 10 15 20 Lf2 

Fig. 2. PDF g(r) of liq. Rb 

The radii r, r 1 and r 2 in eqs.(2.6) to (2.8) are continuous 
variables by definition, but can be referred to the positions of 
maxima and minima of g(r) in Fig. 2, which are listed in Table 

0 

I. For r < 4.0A, U(r,t) reduces to V1 (t). 

Table I . Positions of maxima and mimima of g(r) 

maximum 
minimum 

Total GVCF 

In Fig. 

shown for r 

0. 

-0.2 . 

0 

= 

1st 2nd 3rd 
4.8 8.9 13.0 
6.7 10.9 15.0 

3, MD simulation of the total GVCF, 

4.3, 4.8, 6.7 and 

• 11.~~' 
'---/ 

· .. ___ /~~.F. 
5 10 

8.9.A with VAF for 

Rb 311.7K, 1.502g·cm-> 
total G. V. C. F. 

V.A.F. 

r, A 
~3.2 

4.3 
4.8 
6.7 
8.9 

N{r) 

1 

1.77 
4.63 

13.88 
30.99 

flue.<>< 0.02 (3kl/M) 

15 

0 

in A. 

4th 
17.1 
19.2 

eq. (2.6) 

comparison. 

Fig. 3. Simulation of the total GVCF for the values of r inside 
the first minimum of g(r) in Fig. 2. 
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As r increases in Fig. 3, the structure of the total GVCF 
becomes simpler without the negative minimum of VAF. We consider 
that the memory of the initial velocity of the center of mass of 
even a small local aggregation of atoms disappears quickly with­
out translational movement as a whole. In Fig. 3 and in the 
following, N(r) denotes the average number of atoms inside the 
sphere of radius r including the central one, i.e. <N(r,t)>. 

Relative statistical errors denoted as short horizontal bars 
(flue. or fl.) in Fig. 3 become significant in the calculation of 

the total GVCF for r > 8.9A, which also suggests the smallness 
of the magnitude of the velocity of translational movement as a 
whole. 

Inclusive GVCF 

The MD calculation of the inclusive GVCF eq.(2.7) is shown 
in Fig. 4 for four values of r which correspond to positions of 
the first maximum and the successive three minima of g(r). The 
inclusive GVCF shows how long the initial momentum of the cen­
tral atom to be shared and held by neighbouring atoms within r. 
In Fig. 4, we can see how the initial momentum of the central 
atom is distributed among surrounding atoms in liquid state. 
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<ll'"(r:t>,/(3KT/M) Rb 311.7K, 1.502g·cm·> 
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Fig. 4. Simulation og the inclusive GVCF. The four values of r 
correspond to the first maximum and the successive three 
minima of g(r) in Fig.l. 

Exclusive GVCF 

Collective aspects in the distribution of the initial momen­
tum of an arbitrary central atom among neighbours for t > 0 shown 
in Fig. 4 can be elucidated by analysis of the exclusive GVCF 
eq.(2.8). In Fig. 5, we show the correlation between the central 
atom and atoms in each of three "shells" corresponding to the 
first, the second and the third peaks of g(r), and the average 
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number of atoms in each shell is denoted as t:. N(r)= N(r 2 )-N(r1 ). 
As is seen clearly in Fig.5, the initial momentum of the 

central atom is distributed at first to the innermost shell and 
then to the outer ones in turn. It should be noted here that the 
negative minimum of VAF corresponds to "excitation" of the group 
velocity of the first shell atoms, and also that the oscillating 
tail of VAF is a result of the back-and-forth exchange of momen­
tum between the central and the first shell atoms. 

1· 0 'l''''(r,.r, :tY(3kT/M) R b 311. 7K, 1. 502 g.cm-• 
exc. between center and shells 

r. r2 ,A ~N{r) 

V.AF. 0 - 3.2 

3.2- 6.7 12.88 

n 6.7-10.9 43.97 

m 10.9-15.0 92.11 

Fig. 5. Simulation of the exclusive GVCF. Three curves I , II , m 
correspond to correlations with the first, the second and 
the third shell atoms, respectively. 
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g 6.0 10.40 

h 6.7 12.88 m, 

t,1o-"s 
0 5 10 ~ 15 

Coherent oscillatory 
tail 

Fig. 6. Simulation of the exclusive GVCF inside the first shell. 
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Let us elucidate the "exitation" of the first shell atoms by 
the impact of the initial momentum of the central one, i.e. the 
curve denoted as I in Fig. 5. In Fig. 6, we show the exclusive 
GVCF inside the first shell taking the values of r 2 from 4.3 to 

0 0 
6. 7 A with fixing r 1 = 3. 2 A It can be seen here that the 

transfer of the momentum from the central atom to the first shell 
atoms is very coherent inside the first shell, in other words, 
that the first shell atoms are well-correlated with each other in 
the momentu~ space. We can say that an arbitrary atom in liquid 
rubidium near the melting point is always in a "cage" of sur­
rounding neighbours corresponding to the first peak of g(r). 
Such a cage model for the local structure of atoms in a classi­
cal liquid has been proposed first for understanding the struc~ 
ture in the X-ray diffraction pattern, i.e. the structure of g(r) 
as is shown in Fig. 1. The present MD simulation proves first 
time that the cage model is useful to understand the non-Markov 
relaxation mechanism in the thermal motion of atoms in a liquid 
state near the melting point. 

The collective aspects in the coupling between the central 
and the first shell atoms can be seen clearly in the coherent 
oscillatory long tail of the exclusive GVCF of the first shell 
atoms as is shown in Fig. 7, which is the continuation of each 
curve a to h in Fig. 6 to t > 0.6ps. The coherence in the motion 
of atoms in the first shell can be seen clearly as if the vibra­
tion of the "cage". It should be noted here that the oscilla­
tions of the exclusive GVCF are in antiphase to those of VAF 
suggesting the back-and-forth exchange of momentum inside the 
"cage". The back-flow of the momentum to the central atom are 
seen also from the second shell neighbours as is shown in Fig. 5. 
The recovery of the memory function, a small hump of M(t) in Fig. 
1, can be understood as the result of such correlated back-flow 
of momentum to the central atom. 

X 3kT 
M 

exc. within 1st shell, Rb 
"Coherent oscillatory tail" r::: • 4N(r) 

F~""'===-~-........ ===~--~~---4=·=-3 :_:_A 0.77 

4.4'A 
8 1.1 

4.s'A 1.69 

~~\-----~~~~~==~~~~==~~~4~.a~A r- 3.63 

L_~~~--~~~~--~~~======~~s~.o~'A 11'- 5.06 

s.s'A 
0.1 f-~\---,,L__,,L-__::::"-<::----,;>'L-----=:::::::== 8.17 

s.o'A 
~-----lk-----J.'--tL-~""=:----:~::_----::::::=:::::::10.4C 

-0.05 

6 15 20 

Fig. 7. Oscillatory tails of the exclusive GVCF inside the first 
shell. Each curve is continuation for t > 0.6ps of the 
corresponding one in Fig. 6 to show the coherent and 
antiphase oscillations between the central and the "cage" 
atoms. 
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CONCLUDING REMARKS 

Relaxation mechanism in the thermal motion of atoms in a 
liquid metal is examined with the molecular dynamics simulation 
of three types of the space-time correlation function on the 
group velocity of local aggregation of atoms. Correlated motions 

0 

of atoms are found in the spatial scale of about 20 to 30A over 
about 2ps, which reflect in the non-Markov decay of the velocity 
autocorrelation function of an atom. Such coherent motions can 
be considered corresponding to the quasi-phonon peaks at large 
wave-numbers found in the inelastic scattering spectra of thermal 
neutrons by liquid metals. We have analyzed the frequency spec­
tra of these GVCF, and details will be reported elsewhere. 

We have made similar MD simulations for liquid argon near 
its melting point, and found that the coherence in the thermal 
motion of argon atoms is much weaker than in liquid rubidium. 
The difference can be interpreted with the characteristics of 
effective pair potential between rubidium atoms compared to the 
ordinary Lennard-Jones potential of argon. 
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