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Abstract 

The breakdown problem in a random system is investigated by 

numerical simulation for a network of distributed conductance 

The breakdown voltages are studied in the different conductance 

configurations. ,The mean breakdown strength shows anomalous size 

dependence given by <vb> ;;.( 1/( (ln L) )Y for L (the linear 

dimension of the network). The exponent y depends upon a degree 
~ 

of non-uniformity of the system and gives an information on the 

critical event of the breakdown. For the case of a comparatively 

homogeneous network the micro-crack nucleation is the critical 

event of a breakdown. In such a random resistor network funnel 

defects act as the appropriate critical defects. On the other 

hand, in the case of strongly disordered system the critical 

event in a breakdown is attributed to the growth of cracks. 
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!.Introduction 

When an externally applied force is increased, a solid 

breaks into several pieces. This phenomenon is called a 

fracture. Failure in a stressed system is of great importance in 

science and technology, and it has received a considerable 

attention 1 >. Motion of a crack tip involves rupturing of only a 

small number of atomic bonds at a given instant. Hence, the 

influence of atomic bonds in a local region surrounding the crack 

tip seems to be an important factor( local effect) . 

On the other hand, the non-locality can also play an 

important role through stress concentration induced by crack or 

inhomogeneity 2 • 
3 > Machta and Guyer have found that in a 

random system defects of a funnel shape give a dominant stress 

concentration and called them funnel defect 4
•

5 >. 

Though the aspects of frature is complicated, we believe 

that some possible universal principles should underly the 

fracture phenomena. We can imagine various principles , of which 

the most fundamental one is the fact that the weakest part fails 

at first. We call this weakest spot in a system as a defect. It 

is clear that the defects are primarily important in all fracture 

process and often a few critical defects can determine the 

fracture strength of the entire system. 

Usually, we call a defect a crack when the missing bonds 

form a line. As configuration of such a crack leads to the 

amplification of the external stress, cracks existing in the 

initial flawed configuration are likely to induce the propagation 

of a fracture. It is well known that the weakest points are 

produced around edges of the largest crack, because the stress 

cencentration is proportional to the square root of the length 

of a crack. When the defect concentrations increase, the weakest 

point is not always determined by the largest defect but depends 

also on shielding or enhancement effects which are to be expected 

when the defect concentration increases. The shielding effect 

may be regarded as a non-local effect. This shielding effect is 

well known in continuous mechanics where a crack stops the 

propagation by adding a dislocation at the location of the crack 

tip . Such interactions between defects will be essential to the 
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way a solid disrupts and to the dynamics of rupture 6 >. 

The aim of this paper is to study fracture in a stressed 

disorder system by numerical simulations and hence to clarify 

some basic concepts which could be useful for the construction of 

a comprehensive and general theory of failure phenomena in a 

disordered medium. Classical example of such a fracture is 

considered to be the mechanical failure in an elastic network and 

the electrical breakdown in a resistor network. We focus in this 

paper on an electrical model initially introduced by de 

Arcangalis et al. 7 > , which consists of resistive fuses randomly 

located on each bond of a lattice. Particularly, the critical 

types of defects have been studied in the context of fuse 

networks a """ 11 > in which the electric breaking originates from 

the simple microscopic process of the failure of a single bond 

when the voltage drop across it exceeds a threshold value. 

The breakdown of a random network consisting of these 

elements as the external potential raised is meant to mimic the 

mechanical fracture of a random elastic network under the 

condition of increasing uniform tension. But we must notice that 

the random fuse network method is the scalar analog to the vector 

problem of the mechanical fracture. The electric potential 

fulfills the Laplace equation. On the other hand, when we want to 

take into account the elastic effect we must consider Lame's 

equation. But we believe that there is qualitatively similar 

behaviour between these two models for the fracture. 

Furthermore, we may hope the model of the scalar type to develop 

general insights about fracture in real materials. 

For a random network consisting of nearly identical fuses, 

the behavior of the system is simple, because the failure of one 

bond leads to the formation of a linear crack that breaks the 

entire network. In this case the nucleation ~s the critical event 

of the breakdown. But, on looking round an overall physical 

picture of the breakdown, we find the nucleation to be one aspect 

of the general problem of the breakdown of an initially 

crack-free systems. Generally, it is of vital importance to 

ascertain what is the critical event in the breakdown. If 

micro-cracks are formed and there is a potential barrier 
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for growth of crack, crack growth process is also the critical 

event in the breakdown. In this case the breaking process is 

dominated by the largest crack because of the length-dependent 

amplification of the current at the crack tip as pointed out by 

Duxbury et al. 8 • 9 ·~~> 

As pointed out above, there are two critical processes for 

the breakdown, i.e., the nucleation of micro-cracks and the 

growth of cracks. In a random system these two processes 

interplay. In this paper we would like to report our 

investigation about the size dependence of the average breakdown 

strength of a fuse network in which the various resistive fuses 

are randomly located on each bond of a network. By using the 

results of the average breakdown strength we intend to clarify 

the role of funnel defects in a disordered system and the 

breakdown mechanism of a fuse network. 

2. Network Simulations. 

We consider a random network of fuses. The conductance of 

the fuses is randomly distributed over the range ~m~n=1-(w/2) to 

~max=1+(w/2), where cr~~n is the minimum conductivity and o~ax the 

maximum conductivity 1~'. In this simulation the width w shows a 

degree of the non-uniformity of a system. Each fuse has the 

breaking point of 1 [A] ( 1/<f[ V]). Above 1 [A], a fuse becomes 

an insulator (Fig.l). Now place such fuses at random on the bonds 

of a two-dimensional lattice. In such a random network we have an 

inhomogeneous distribution of voltage and current, which in turn 

controls the damage process. We intend to clarify this phenomenon 

by means of computer simulation. 

We have performed numerical simulation on LxL random fuse 

networks on the square lattice with L. The length L extends from 

10 to 40. The voltage was applied across the horizontal bus bars 

on opposite edges of the lattice. A free-boundary condition was 

used for the other two edges (Fig.2). If a sufficiently small 

voltage is applied then the system conducts just as a random 

resistor network. When the externally applied voltage becomes 

large, some of the fuses will be broken. And if enough unmber 
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of the fuses break, the bus bars will no longer be connected, so 

we will have a breakdown of the entire network. 

In this paper we are engaged in the breakdown strength. The 

breakdown strength of a particular configuration is the lowest 

externally applied voltage <vo> at which the network breaks down 

One way of calculating the breakdown voltage in the fuse 

network is to perform the following, two-step process iteratively 

for each lattice configuration. (1) Solve Kirchhoff's equations. 

We use the conjugate-gradient method to solve Kirchhoff's 

equations on this netwrok 10 ). (2) Find the fuse which is broken. 

3. Breakdown Strength and its Size Effect. 

In this section we calcualte numerically the breakdown 

strength as a function of size L of the circuit and then 

investigate what mechanism dominates in the breakdown process. 

For the sufficiently small width w , that is nearly homogeneous 

network, once one broken bond nucleates, there is a tendency that 

the breaking of the first bond immediately leads to catastrophic 

failure of the network by the growth of a straight-line crack. 

Figure 3 displays the configuration of a 20x20 lattice for the 

width w=0.50 Bonds that break during the simulation are 

indicated by blanks. Numeral denotes a magnitude of current 

passing a bond. In this case at first the micro-crack nucleates 

at the weakest bond and then propagates through the entire sample 

in the direction normal to the applied load without further 

increase in voltage. 

during the increase 

The external voltage drop V keeps constant 

in the number of broken bonds . Hence, the 

nucleation of a single broken bond determines the entire fracture. 

Duxbury et al. 8
• 9 • 11 ) have argued that in the case of weak 

disorder the breaking process is dominated by the largest crack 

in the initial state of the system. At the tip of this larg.est 

crack, the local current flow is enhanced by a factor which is 

proportional to the square root of the crack length in two 

dimensions Figure 3 shows the current concentration at the 

crack tip. They have reported that for a system of linear 

dimension L the length of the largest crack is proportional to · 
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ln L. We can explain this result as follows. We imagine a 

horizontal line defect cluster as a crack . In the L2 network the 

number of places in the volume that the line defect cluster can 

be placed on the lattice is approximately equal to L2
• Let us 

assume a fraction or concentration ) of the bonds occupied to 

be p. The remaining fraction (1-p) is of vacant bonds to act as 

insulators. Hence, the probability of n bonds missing is (1-p)n 

and the probability P(n) that n adjacent bonds will be missing 

is about P(n)=(1-p) 0 L2 • The largest defect cluster is determined 

by that value of n=no for which P(n) is of order 1 or (1-p) 0 L2 =1 

, which implies that the most critical defect size nc=ln L surely 

occurs somewhere in the networks. 

In a system of linear dimension L, the length of the largest 

crack is proportional to ln L and the current enhancement at the 

tip of this critical defect is of order (ln L) 1 / 2 , so that this 

leads to the average breaking potential of the network vanishing 

asymptotically as 1/(lnL) 1
/ 2 with increasing L. We have shown 

the dependence of the average breaking potential of the network 

< vb> on size L in Fig.4. The graph is plotted <vb> versus ln L 

on a double logarithmic scale for the case of w=O. 24 which 

corresponds to the ratio ~rnin/ ~rnax=0.73. The simulation results 

lies on the straight line. This result shows that, even we use a 

system with the free boundary conditions in the transverse 

directions, there is not a strongly enhanced probability of 

broken bonds near the free surfaces of the network. From Fig.4 it 

is clear that <vb> is a decreasing function of 1/(ln L)Y and the 

exponent y is 0.0425. 

This result leading to the too small exponent y is 

contradict to Duxbury et al.'s argument that the breaking process 

is controlled by the largest crack in the system. In their result 

the exponent y is proposed to be about 1/2. Our results reflects 

the fact that in a comparatively homogeneous medium the 

nucleation of micro-cracks rather than the growth of cracks is 

the critical event for the breakdown. In a crack-free system 

there should be defects which may concentrate the current only a 

bit necessary to nucleate micro-cracks. 

Machta and Guyer 4
•

5 > have proposed funnel-type defects to 
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distribute in a random circuit. The funnel defect gives rise to 

the current concentration. They have studied the random resistive 

network with two different nonzero conductivities and proposed 

that the funnel defect was the domain defect in this problem. A 

funnel defect funnels a current proportional to its size J!. of 

the defect cluster through the most critical bond ( for example, 

in two dimensions two horizontal cracks with a few bonds between 

them have this property. See the bonds indicated by the arrow in 

Fig. 8) The current density reachs a finite maximum in the 

critical bond. The maximum current increases as a power law in ( 

)'la) where a is lattice constant. As the system size increases, 

larger defects (configurations) appear and the maximum current in 

the network increases. They have obtained the logarithmic size 

dependence of the breakdown strength and reported the logarithmic 

size dependence of the breaking strength to be a robust feature 

of breakdown in a variety of models, though the exponent y may be 

dependent upon the field ( voltage etc.) and on the breakdown law 

of a single bond. They also have shown the enhancement exponent y 

is dependent on the ratio of the two conductivities, i.e., 

o'_. I() :max • The factor y ranges from 1/2 to 0 according O~n:~.n/Omax 
llltn' 

changing from 0 to 1. 

We show the results for the cases of w=O. 6 and 1. 0 in 

Figs. 5 and 6. The exponent y =0. 0913 for w=O. 6 and y=O. 214 for 

w=1. 0, respectively. We have also plotted the dependence of the 

exponent y on the ratio Om:~.n/6max in Fig.7. Our numerical results 

are shown by the circles, and the dashed line is the analytical 

results of Machta and Guyer. In the range of the small width w, 

our results are consistent with Machta' s analytical results. In 

this range the funnel model is more appropriate to the random 

resistor circuits as compared with the crack model. 

For larger the width w, the breakdown of the network is more 

gradual than in the brittle fracture of small w. Figure 8 shows 

the case of the width w=2.0. The sample does not fail 

instantenuously when the first bond breaks. Further increase in 

the applied voltage leads to additional non-catastrophic failures 

In this case the final failure path, that is the critical 

crack, is far from straight and there is considerable damage to 
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the network . 

As seen from Fig.7, in the case of the large w, i.e., w=0.6 

( o n>in/ o ...... :x=O. 54) , there is apparently small difference between 

our results and Machta' results. In such a more random state 

defects begin interacting and larger defects or cluster appear. 

In the limit of w=2 our results rather approaches to Duxbury' s 

result 12 J In the limit w 2 Duxbury et al. predict that the 

exponent y goes to y=l/(D-1) where D is the spatial dimension. 

Hence, in the present case of D=2 the exponent y approaches to 

y=l. This consequence seems an aspect that there is limitation of 

the validity of the two components funnel model. This limitation 

reflects appearance of new fracture process, that is the critical 

defect to be a crack. Machta et al. have talked that there is a 

dicontinuity in y at w=2 and that the discontinuity is. a 

crossover from the dominance of funnel to linear critical defect. 

4. Hot Spots and Distribution of Breakdown Strengths. 

The calculation ··of the previous section have been for the 

average breakdown strength in the breakdown process. We have said 

that in the case of a crack-free system initiation of the 

breakdown process has been attributed to resistors with high 

current. Usually regions where the density of the dissipated 

power is substantially larger than in the surrounding areas are 

called hot spots. Machta et al. have called the resistor 

distributions giving to those hot spots as "funnel defects". This 

critical defect appears as a result of long-range effects of the 

resistor distributions. In order to test the hypothesis that the 

funnel defect is a critical defect, we study the spatial 

distribution of current in a system. Figures 9(a,b,c) show the 

spatial fluctuation of current in the case of w=1.5. Figure 9(a) 

shows that there is the current concentration at the ( 2, 11) 

beside the left free boundary. After increasing the voltage a bit 

there occurs a different distribution of the current and there 

appears another funnel defect at (11,7) (see Fig.9{b)) Our 

simulation further confirms that hot spots. are results of 

strongly nonlocal properties of the resistor distribution. The 
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constriction of the current to a few narrow necks plays an 

important role in the evolution of hot spots. The hot spots grow 

parallel to the applied electric field. 

Figure 9 (c) shows this point to be broken and there to 

nucleate the broken bond. Helsing et al. 13 ) have shown how the 

field in a single resistor depend on the resistor itself (local 

effect ) and on its surrounding networks ( long-range effect) . 

They also have reported that the long-range effect in two 

dimensions, related to the resistor distribution surrounding on a 

hot spot has a characteristic double-cone shape with opening 

angle of 90° and cone axis along the applied field. The 

well-conducting links form connected paths which are narrowed at 

the hot spot due to the blocking by poorly-conducting links. Our 

results are consistent to Helsing's conclusions. 

The existence of hot spots is not determined only by the 

resistor distribution in the immediate vicinity of the hot spot. 

Instead, it also strongly depends upon the distribution of the 

resistors in a large region surronding the particular spot. 

Hence, hot spots should be regarded as results of global, rather 

than local properties of the phase distribution. 

In the case of the breakdown strength, it is possible to 

calculate the form of the full distribution of breakdwon 

strengths. In other word, it is to consider the probability that 

a network has failed at a voltage v or less. The calculation 

relies upon the same hypothsis that the eventual failure of the 

network is dominated by the most critical defect in the network. 

The calculation of the full distribution function of breakwon 

strengths then reduces to the calculation of the distribution 

functions of these most critical defects. In order to know new 

breakdown process, we have investigated the voltage dependence of 

the number of fractures. The data represents 500 trials on a 

network. 

The distribution of <vc> is a relatively sensitive probe of 

the underlying breaking mechanism. For small w in 

comparatively pure limit the distribution function of number of 

the breaking strengths resembles Gaussian distribution (see 

Fig.lO). This calculation results relies upon the hypothesis that 
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there is only type of breakdown process and that the eventual 

failure of the network is dominated by the nucleation of a 

micro-crack in the network. In the region of the lower side of 

the distribution to be exponential in v, the cumulative 

distribution for failure voltage F(v) is expressed in the Weibull 

form. In order to test for conformity to a Weibull distriution 

, F ( v) = 1- exp ( -cL2 vrn) where c and m are constants. We plot 

ln[(1-F(v))] against -[(v-10)/15] 3
• The agreement between the 

simulation results and the Weibull distribution is good (see 

Fig.ll). 

On the other hand, for the larger w, the main peak itself 

decreases and shifts to the lower voltage side The distribution 

broadens and displays several peaks on lower side of the main 

peak (Fig.12). When the randomness starts incresing, some 

defects are close enough to interact and finite clusters of 

missing bonds are present and then a large crack develops. 

Finally, the maximum disturbance in the current distributions is 

created by long thin defect orientated perpendicular to the 

average current flow. And the crack propagates across the lattice 

of already present structures. 

5.Conclusion. 

We have studied the fracture in a random resistor network 

by numerical simulations. The breaking voltage in the network has 

been studied as a function of the size. For a weakly disordered 

network, numerical simulations are in agreement with Machta et 

al.'s theoretical prediction, that is the funnel defect to be the 

critical defect. The breakdown of a strongly disordered network 

is governed by the growth of cracks as pointed out by Duxbury and 

shows the tensile properties rather than the brittle properties 

in the case of weakly disordered system. For intermediate case, 

there are complicated interactions between defects. 
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I[A] 

1 

1/a V[V] 

Fig.l. I-V characteristic for a 

single fuse. Above a current of 

i[A], no current flows. 
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4 4 4 5 J 3 2 1 1 1 1 1 1 1 i 1 1 1 1 1 
- - - - - - - - - - - - - - - - - - -

4 s 4 s s 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 4 s s '1 

-------------------· 4 4 ss s 3_1 1 1 1 1 1 1 1 1 1 1 1 1 1 

-------------------: & 4 4 4 J J 2 2 1 1 1 1 1 1 1 1 1 1 1 ~ 
- - - - - - - - - - - - ~ - - - - - -

3 4 3 J 3 3 2 2 1 1 1 1- 1 1 1 ~ 1 1 1 1 - - - - - - - - - - - - - - - -
3 3 J 3 J 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 -------------------: 
~ 3 3 3 J 2 2 2 2 1 1 1 1"1 1 1 1 1 1 1 - - - - -- - - -- - - - - - - - - -
3 3 3 3 2 2 2 ·2 2 2 1 1 1 1 1 1 1 1 1 1. 
- - - - - - - - - - - - -· - - - - - - . 

2 3 3 2 3 2 2 2 2 2 1 2 1 1 1 i 1 1 1 1 
- - - - - - - - - - - - - - - - - - - I 

2 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 
- - - - - - - - - - - - - - - - - - - I 

2 2 3 2 2 2 2 2 2 2 2 2 1 i 1 1 1 1 1 1 - - - - - - - - - - - - - - - - - - -
2 2 2 2 2 2 2 2 2 2 z 2 2 1 1 1 1 1 1 1 - - - - - - -.- - - - - - - - - - - - . 
2 2 2 J 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 

-------------------· 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 
- - - - - - - - - - - - - - -

2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 1 1 
- - - - - - - - - - - - - - -

2 2 2 2 2 2 2 2 2 2.2 2 2 1 1 1 1 1 1 1 

Fig.3. Snapshot of a network for 

the case of w=O.S. Numeral denotes 

a magnitude of current passing a 

bond. The numeral '1' indicates 

the current 0.9~[A] and the numeral 

'9' the current 0.9~[A]. 
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Fig.2. Network for a L x L square 

lattice. 

-0.08 

.-0.09 

-0.10 

w=0.24 

y=0.0425 

0.8 1.0 1.2 1.4 

ln(ln L) 

Fig.4. Plot of ln<Vb> vs ln(ln L) 

for the case of w=0.24. The slope 

of this plot gives -1/y. 



-0.20 

-0.22 

-0.24 

0.8 

w=0.6 

y=0.0913 

1.2 

ln(ln L) 

1.6 

Fig.S. Plot of ln<Vb> vs ln(ln L) 

for the case of w=0.6 

0.5 

0.3 

0.1 

\ 
\ 

y 

' ' ' ' ' ' 

0.2 0.6 

cr . /cr 
m~n max 

1.0 

Fig.7. The exponent y vs Omin/crmax· 
The circles are our results and the 

dashed line is Machta's funnel model. 
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-0.24 w=l.O 

y=0.214 

-0.28 

-0.32 

0.8 1.0 1.2 1.4 

ln(ln L) 

Fig.6. Plot of ln<Vb> vs ln(ln L) 

for the case of w=l.O. 

1 2 1 1 1 2 2 2 2 2 2 1 ·2 2 2 3 3 1 2 1 

2 2 1 2 1 1 2 2 1 1 2 1 2 3 1 3 2 1 2 2 

2 1 1 1 2 1 2 1 2 1 2 2.1 3 1 2 2 z 1 l 

1 1 2 1 z 1 2 1 z 1 3 z 1 3 1 z 3 1 2 l ------------ ~- -·-----
1 1 1 2 1 2 2 1 z 1 2 2 2 3 1 3 3 1 2 2 

1 2 1 2 1 1 1 2 2 1 z 2 2 2 z 1 3 1 2 2 

1 2 2 1 1 1 2 2 2 1 3 3 1 3 3 2 1 4 1 

1 2 1 1 2 1 1 2 1 1 1 2 1 3 2 3 2 3 1 2 . 

1 2 1 1 2 1 1 1 1 1 1 2 3 j 3 2 3 1 3 3 

1 2 2 1 1 1 1 1 4 4 4 1 3 1 3 3 - -- - - - - -- - -
1 4 2 1 1 f I 3 1 4 4 2 2 ~ 2 2 

1 2 3 1 2 1 2 1 1 1 1 2 2 3 4 1 3 1 3 2 

1 2 2 1 2 1 2 1 1 1 3 2 1 2 3 2 1 2 3 z 
1 2 1 2 1 2 2 z ~ 2 1 2 z 1 3 z z 3 1 1 

2 2 2 1 1 1 z 2 1 2 1 3 z z 1 z z 3 1 2 

1 2 2 1 1 1 z 2 1 2 1 2 3 1 3 2 1 3 1 2 

2 1 2 1 1 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 

2 1 3 1 1 2 1 z 2 1 2 z 2 2 2 1 2 2 z z 
2 2 1 2 2 2 1 2 2 1 3 2 1 2 2 1 2 2 2 1 

1 2 1 2 1 1 2 1 2 1 2 2 2 2 2 1 1 2 3 2 

Fig.B. Snapshots of a network for 
the case of w=2.0. We indicate 

the hottest bond in the network 

by the arrow. 
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2-3-2-2--3-3-3-3-3-3-2-4-3-2-3-2-3-1-3 -3· -- - - - - - - - - - - - - - - - - - . 
2 2 2 1.3 3 2 3 3 2 3 3 2 3 4 2 3 1 3 3 

2- _3_2_3_3_1_4_2_3_3_2_2_3_3~3-2-2-~-3· 

- - - - - - - - - - - --------
2 2 3 2 3 3 3 3 2 1 3 3 2 3 3 2 3 2 3 2 
~ - - - - - - - - - - - - - - - - - - . 

1 3 3 2 3 3 4 3 2 2 4 2 2 2 4 3 1 3 3 2 
2_3_2_2~2-3_3_3_1_3_2_2_3_2_3_2_3_3_2_2_ 

- - - - -- - - - - - -2 3 2 2 2 2 3 3 3 3 1 3 2_3_2_3_3_3_2_2. 

2_3_3_2_2_2_3_3_2_3_1_3_3_2~3-3_2_3_2_3_ 

2_2_4_2_2_2_3_3_3_2_2_2_3_2_3_3_3-~-2-3 

- - - - - - --- - - - - - -2 ~ 4 2 2 3 2 3 3 2 2 3 3 3 3 2_3_3_2_2_ 

- - - - - - -- - - - - - -
3 3 2 3 3 3 2 3 3 1 3 3 1 3 3_1_3_3_3_1. 

- - - - - - - - . - - - - - - - - - - . 
2 3"2 3 2 2 3 2 3 2 3 2 3 3 3 2 1 3 3 2 

(c) 
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2 3 1 2 2 2 3 2 3 2 3 2 3 2 2 3 3 2 2 2 

3 3 1 3 2 2 3 3 2 2 3 2 2 3 2 ~ 3 2 2 3 

3 2 2 2 3 2 3 2 3 2 3 3 1 3 2 3 3 2 1 3 

2 1 3 1 3 2 3 2 3 1 4 3 2 3 2 3 3 2 2 3 

3 1 2 3 2 3 3 2 3 2 4 2 2 3 1 3 3 1·3 2 

1 3 2 3 2 2 2 3 3 2 4"2 3 3 2 2 3 2 2 3 

2 3 2 3 2 2 3 3 3 1 4 3 3 2 3 3 3 1 3 1 - - - -- - - - - - - ~ - - - - - - - ~ 
2 3 2 1 3 3 3 3 2 3 3 3 2 3 2 2 2 3 2 2 

2 2 2 2 3 3 2 3 2 3 2 4 3 2 3 2 3 1 3 3 

2 2 2 1 3 3 2 3 3 2 3 s 2 3 3 2 3 1 3 3 

2 3 2 3 3 1 4 2 3 3 2 2 3 3 2 2 2 3 3 

1 2 2 2 3 3 3 3 2 1 3 3 2 2 3 2 3 2 3 2 

1 3 2 2 3 3 3 2 2 2 3 2 2 2 3 3 1 2 3 2 

2 3 2 2 2 3 3 3 1 3 2 2 3 2 3 2 3 3 2 2 

2 3 2 2 2 2 3 3 3 3 1 3 2 3 2 3 3 3 2 2 

2 3 3 2 2 2 3 3 2 3 1 3 3 2 3 3 2 3 2 3 

2 2 3 2 2 2 3 3 3 2 2 2 3 2 3 2 3 2 2 3 

2 2 4 2 2 3 1 3 3 2 2 3 3 3 3 2 2 3 2 2 

-------------- -·----
3 3 2 J 2 3 2 3 2 1 3 3 1 3 3 1 3 3 3 1 

2 3 2 3 2 2 3 2 3 2 3 2 3 3 3 2 1 3 3 2 

(b) 

Fig.9. Snapshots of a network for 

the case of w=1.5. 

(a) The position vector of a hot 
spot is (2,11). 

{b) and (c) The position vectors 

of two hot spots are (2,11) and 
(11,7). 
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Fig.lO. The distribution of breaking strengths 

vs applied voltage V for the case of w=O.S. 
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Fig.ll. The cumulative distribution of the 

breaking strengths vs .applied voltage V for 

the case of w=O.S. 
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Fig.l2. Number of breaking strengths vs applied 

voltage V for the case of w=2.0. 
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