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The atomic configurations and electronic states of dislocations 
in covalent semiconductors are studied using an LCAO (linear 
combination of atomic orbitals) recursion electronic theory. 
Partiqular attention will be focused on the determination of band 
gap states associated with the dislocation line and point like 
singularities, 11 Solitons 11

, in the dislocation core region. Using 
the calculated electronic states of the dislocations, we discuss 
the effects of impurity doping and non-radiative recombination of 
the injected carriers on the dislocation motion in the 
semiconductors. 

1. INTRODUCTION 

It has been well established that the dislocation mobility in 
semiconductors is affected quite significantly by doping of 
electrically active impurities [ 1,2). The effect of n-doping is 
quite large for si and Ge, and it increases the dislocation 
velocity by reducing the apparent activation energy of dislocation 
motion. The behavior of p-doping is anomalous, but for high 
c once n t r at ions of a c c e p tor s , the v e 1 o c it y a 1 so increases 
(decreases) when compared with intrinsic Si ( Ge). On the other 
hand, dislocation motion in covalent semiconductors (e.g., GaAs, 
InP, GaP and si) is strongly enhanced by irradiation by electron 
beam or laser light [ 2, 3). The observed excitation enhancement of 
the dislocation motion can be interpreted in terms of the 
reduction in activation energy of non-radiative recombination of 
injected carriers at the dislocation core [ 5). In the present 
study, we focus our attention to the electronic states associated 
with dislocations in covalent semiconductors. We calculate the 
atomic configurations and local electronic states of dislocations 
in Si crystals using the LCAO (linear combination of atomic 
orbitals) recursion electronic theory [ 6, 7) . 

Using the calculated electronic states of the dislocations, we 
also discuss the effects of impurity doping and non-radiative 
recombination of the injected carriers on the dislocation motion 
in the semiconductors. We will show that the point like 
singularities 11 Solitons 11 exsisting in the reconstructed core are 
responsible for the deep levels of the dislocation cores. This 
conclusion is identical to that of the earlier work by Heggie and 
Jones [ 8] in the sense that point like irregularities play an 
important role in the elemental process of the dislocation motion. 
However, the present calculations are in distinction with the 
previous ones in the following points: we have found that 
11 soli tons 11 in the reconstructed dislocation core with very small 
atomic displacements (for details, see Fig .1) can produce the 
prominent deep levels in the band gap. This is in accordance with 
the recent theoretical speculation by Maeda and Takeuchi [ 5 J on 
the dislocation mobility and experimental result on the 
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dislocation core using the high resolution electron microscopy 
observations ( 91. 

2. PRINCIPLE OF CALCULATIONS 

To calculate the atomic configuration of the dislocation 
core, we use the LCAO recursion theory and the quenched molecular 
dynamics method [ 10,111. We assume that the total energy of the 
system can be given by a sum of the band structure energy Eb and 
the pairwise repulsive energy Er contributions. The band structure 
energy Eb can be calculated from the electronic Green 1 s functions 
of the continued fraction form. 

Gii(E) = 1/[E- a1- b1/(E- a2 - •.• - bn/(E- an+l-bn+l/E- 1, 
( 1 ) 

where ai and bi are the recursion coefficents and obtained by 
usual recursion technique. [ 61 The local density of staes (DOS) 
Pi( E) on atomic site i can then be calculated from the Green Is 
function Gii(E) as 

Pl.. (E) -- - { 1 I"") lim . ,. s-Q I m G ii ( E + l. s ) { 2 ) 

The two center hopping integrals and pairwise repulsive potentials 
are taken from Refs. 12 and 13, and used for the atomic 
configuration calculation of the dislocations. This set of 
transferable TB parameters reproduces well the equilibrium volumes 
of close packed structures of si and is suitable for extensive 
molecular dynamics simulations [ 12-14]. In general, the functional 
forms of the two center integrals and repulsive potentials are 
introduced so as to have a rapid attenuation between the first­
and second-neighbours in the diamond structure. on the other hand, 
the minimal basis sp3s* basis functions proposed by Vogl et al. 
[ 151 are used for the electronic structure calculations of the 
dislocations. This choice of TB parameters are based on the 
following reasons; The usual nearest-neighbour sp3 model fails to 
produce an indirect gap for si because it omits essential physics; 
the excited atomic states, such as the s* state of atomic si, 
couple with the anti-bonding p-like conduction states near the X 
and L points of the Brillouin zone, and press these states down in 
energy. Therefore, the inclusion of an excited s-state, s*, on 
each atom is essential, giving an sp3s* basis and a ten-band 
theory. This model has been applied to interpret successfully data 
on point defects, bulk and surf ace core exci tons and semiconductor 
surface states. The atomic energy levels Es, Ep and E s* are 
shifted rigidly so as to ensure the local charge neutrality 
condition in the crystal with dislocations 

To terminate the recursion coefficients, we use two different 
termination schemes: ( 1) For the atomic configuration calculation 
of the dislocation, we use the simple termination scheme proposed 
by Beer and Pettifor [16], with the exact recursion coefficients 
up to the fourth level. we use the more elaborate average 
termination procedure of Ref. 7 for the electronic structure 
calculation of the dislocations: The recursion coefficients are 
calculated up to 34th level for the clusters of about 32800 atoms. 
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Table 1. TB parameters used in the present calculation ( eV). 

material Es Ep Es * ss a spa s*pa ppa ppn 

c -4.545 3.840 11.37 -5.681 6.591 3.555 6.795 -1.958 

Si -4.2 1.715 6.69 -2.075 2.481 2.327 2. 716 -0.715 

Ge -5.88 1. 61 6.39 -1. 69 5 2.366 2.260 2.853 -0.823 

The atomic relaxation calculation is preformed by using the 
quenched molecular dynamics method, i.e., by integrating the 
Newtonian equation of motion with the central difference algoli thrn 
[ 10, 11] . We use the following explicit expressions: 

where ri(t), Vi(t) are the position and velocity of the atom i at 
timet and Fi(t) is the force acting on the atom i at this 
time. The minimum energy atomic configuration can be determined by 
using the quenching procedure, i.e., the velocity of an atom i is 
cancelled when the product Fi(t)vi(t) is negative. 

3. RESULTS AND DISCUSSIONS 

In a diamond cubic crystal, the important dislocations are 
the 60° , screw and 90° (edge) perfect dislocations [17]. The 
first one dissociates into a 30° and 90° partial dislocations 
while the others splits into a pair of 30° and 60° partial 
dislocations, respectively. The atomic configurations of 30° 
partial and 90° partial dislocations are shown in Figs. la and 
lb, respectively. In these figures, the reconstruction defects 
"solitons" are presented near the center of the figures. All the 
partials are separated by intrinsic stacking faults. The plastic 
flowoccurs, primarily, throughthemotionof 30° and 90° glide 
partials lying on {111} planes. These partials, which have line 
directions along <110> are believed to be reconstructed into a 
structure with no dangling bonds. In view of this, we have 
performed the electronic structure calculations of glide 30° and 
90° partial dislocations, taking into account the possibility of 
core reconstructions. 

The kinks are modelled by breaking and forming bonds in such 
a way that the stacking fault is advanced to the next Peierls 
valley [ 18]. Figures 2 and 3 show the kink pair structure along 
the 90° and 30° partial, respectively. It is noted that there are 
two types of kinks along the 30° partial. Two five-membered rings 
are placed through the formation of the double kink by a four- and 
six-membered ring at A and by a five- and six-membered ring at B. 
The kinks along the 90° partial have identical structures and can 
be described as a transfer of two six-membered rings to a five­
and a seven-membered ring. The kinks are fully coordinated and 
have the same local geometry for trailing and leading partials. 
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Fig .1 Atomic configurations of reconstructed 90° partial (a) and 
30° partial (b) dislocations in diamond cubic lattice. The 
reconstruction defects "soli tons" are also presented. 

Fig. 2 Atomic configurations of a double kink along the 90° partial 
dislocation in si crystal. 
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Fig. 3 Atomic configurations of a double kink along the 30° 
partial. Note that the two kinks, marked by A and B, 

have inequivalent structures. 

3a. Elemental Process of Dislocation Motion 

Before discussing the electronic states of the dislocations, 
we briefly summarize the recent theories of enhanced dislocation 
motion in the semiconductors. The dislocation motion in covalent 
semiconductors has been discussed in detail by Birth and Lathe 
[ 19] on the basis of the abrupt kink model and the kink diffusion 
theory of Peierls mechanism. The dislocation velocity is generally 
written in two different forms according to whether the kink-kink 
collision occurs or not 

2dv'Jvk 

V =t 
(X<<L) ( 5- a) 

dJL (X>>L) ( 5- b) 

Here J is the frequency of kink-pair formation per unit length of 
the dislocation, vk is the lateral velocity of a kink along the 
Peierls valley, d is the interval of Peierls valleys, X is the 
mean free path of migration of a kink, and L is the segment length 
of a dislocation. The condition X<<L and X>>L, respectively, 
correspond to the dislocation motion with and without kink-kink 
collisions. Maeda and Takeuchi [5] have derived J directly from a 
set of rate equations which represent the equilibrium jump 
frequency of kinks at each kink site ( 0,1, 2, •.. in Fig. 4). The 
result of J is written as 

lp-1 \ 
J = v8(bdt/k1)exp [-_1_] .i: (AEiFAE(i+ 1~) +EdifJ 

kT 1=0 (6) 
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where Vs is the trial jump frequency of straight-dislocation 

sites, b is the Burgers vector, ,; is the shear stress component in 
the direction of b, and Edif is the effective activation energy 
barrier to diffusive kink migration. In the summation of the above 
eq. ( 6), p is the site number at which the energy of a kink pair 
assumes the maximum value, AEi+ and AE(i+l)- denote the potential 
barriers to the processes of site i -+site (i+l) and site i~site 
( i+l), respectively. on the other hand, the lateral kink velocity 
vk is obtained by means of the Einstein relation in diffusive 
phenomenon. and given in a for m of the Ahrenius type, with 
activation energy of Edif• 

( 7 ) 

where Vk is the trial jump frequency of kinks. One can then 
discuss the elementary process of the dislocation motion by 
estimating J and vk, i.e., the summation term and Edif in eq. ( 6) 

taking into account the experimental conditions. 
Maeda and Takeuchi [ 5 J have also derived expressions of the 

velocity of enhanced dislocation motion under crystal excitation. 
Since the electronic states of straight-dislocation sites are 
generally different from those of kink sites, recombination 
enhanced dislocation motion can be classified in the following 
three cases: ( i) Recombination enhancement occurs at both 
straight-dislocation sites and kink sites, ( ii) Recombination 
enhancement occurs only at straight-dislocation sites, and ( iii) 
Recombination enhancement occurs only at the kink sites. In Table 
2, we summarize the features of the enhanced dislocation motion of 
the above three cases. Then using the theoretical results 

Table 2. Activation energies of enhanced dislocation motion (from 
Ref.S). 

segment site of pre-exponential reduction of 
length recombination factor activation energy 

X<<L SD + K ex I ( 1/2) (AEs+AEk) 

SD ex ..fi ( 1/2 )AEs 

K ex fi (1/2)AEk 

X>>L SD + K ex I 

SD ex I 

K no effect no effect 

SD: straight-dislocation site, K: kink site, I: excitation 
intensity. 
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presented in Table 2, and the facts that ( i) X>>L is realized 
under usual experimental conditions and ( ii) the pre-exponential 
factor is propotional to the excitation intensity I, one can show 
that the reduction in activation energy is simply equal to AEs 

[ 2 o). Here, AEs denotes the decrease of the potential barrier 

under the crystal excitation for the process of site 0-+ site 1. It 

is noted that AEs takes larger value of AEse and AEsh (energy 
release of electron and bole captures, see Fig. 5): 

( s) 

on the other hand, the potential barrier for the kink migration 
might be reduced by AEk for the processes of site i ._. site(i+1) 

(i=1,2,3, ..• ) and site 0 -site 1. However, it is noted that even 
if the enhancement of kink migration occurs, it does not 
contribute to the dislocation mobility enhancement because of the 
cancellation between the forward and backward kink migration. 

E 

~~---L--~--~pa~-L--~--~--~i 

p 

Fig. 4 Potential barriers for 
dislocation motion in 

semi-conductors. Dashed 
line is estimated by 
using continuum elasticity 
theory. 

C. B. 

V. B. 

Fig. 5 Non-radiative recombina­
tion at the straight dis­
location sites. 

3b. Electronic States and Dislocation Motion 

In Figs. 6 and 7, we present the local DOS of the perfect si 
and c (diamond cubic) crystals, respectively. One can see in these 
figures that the lower valence band is composed mainly of s- and 
p- components, while the higher conduction band of s-, p- and s * 
components. Although the calculated DOS by the recursion method 
does not vanish exactly in the gap, we have obtained reasonable 
width of the energy gap region (with negligible DOS value), 1.17 
eV and 5. 2 ev, for si and c crystal, respectively. The relative 
contributions of s-, p-(Px+Py+Pz) and s*- subbands to the total 
DOS of c crystal are quite similar to those of si crystal, but the 
prominent three peaked valence band structure is obtained only for 
the Si crystal (not for C). 

In Fig. 8, we present the calculated local electronic DOS on 
the atom (with geometrical dangling bond) in the core of 9 0 o 

partial dislocation in si, together with s*- (Sa), s- ( Sb) and p­
( Se) partial DOS. It can be seen in this figure that there is no 
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Fig. 6 Electronic DOS of perfect c crystal, calculated by using 
sp3s* basis recursion method. 
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Fig. 7 Electronic DOS of perfect si crystal, calculated by using 
sp3s* basis recursion method. 
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prominent deep levels in the band gap region. Instead, we have 
obtained finite DOS in the gap region, in agreement with the 
previous theoretical calculations [ 21-22]. This may indicate that 
there can be electric currents along the dislocation line (so­
called leakage current in the electronic device engineering). 
However, it must be noted that such electronic states in the gap 
region do not provide recombination centers which cause the 
enhanced dislocation mobility. we have also obtained the similar 
results for 90° partial dislocations in c crystal. 

In Fig. 9, we present the calculated local electronic DOS on 
the soli ton-site atom (marked by A in Fig. le) in the core of 90° 
partial dislocation in si, together with s*-(9a), s-(9b) and p­
(9c) partial DOS. One can see in Fig.9 that s-and p- (and s*) 
partial DOS are strongly deformed due to the variation of the 
atomic configuration of the dislocation core. In these 
calculations, it is the most important that the prominent deep 
levels of "soli tons" (located near the center of the band gap) 
appear even for the reconstructed core with small atomic 
displacernents of A<O. 1do (dO being the nearest-neighbour distance 
of the perfect si lattice). 

The local DOS on the kink-site a torn in the core of 9 0 o 

partial dislocation in Si are shown in Fig. 10. One can see in 
Fig.10 that finite DOS appear in the band gap region, but there 
are no ~-function like peaks in the gap. Although this kink-site 
atom has three nearest neighbours di ( i=1, 2, and 3) > 1. 25d0 , it 

has a strongly compressed bond with di"" 0.92do. Therefore, this atom 

has effectively no dangling bonds and does not produce any ~­
function like gap states. 

B 
ro 

~ 

-8 -4 0 
E(eV)-

4 8 12 

Fig. 8 Local DOS on the atom in the core of the 90° par tail 
dislocation in si crystal {non-soliton site). 
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Fig. 9 Local DOS on the atom in the core of 90° partial 
dislocation in si crystal (soli ton site). 

E (eV)--

Fig .10 Local DOS on the kink-site atom in the core of 90° partial 
dislocation in si crystal. 
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In Fig. 11a, we present the local DOS on the soli ton-site atom 
in the core of 30° partial dislocation in si crystal. One can see 
in this figure that there appears a prominent deep level near the 
center of the gap. In Figs.11b and 11c, we also present the local 
DOS on the kink-site atoms A and B in the core of 3 0° partial 
dislocation in c crystal. We do not present here the DOS curves on 
kink-site atoms of 30° partial dislocation in Si crystal because 
they are quite similar to those of c crystal presented in Figs .11b 
and 11c. For the kink sites A and B, we do not have the deep 
levels in the gap. This is due to the fact that there are four 
nearest-neighbours on the kink-site a toms A and B (two compressed 
and two stretched bonds) , and the electronic states are not 
changed strongly as in the atomic sites with geometrical dangling 
bonds. 

1.2 

6 0.8 
....., 
<0 

1ii 0.4 
-.. 

(/) 0 (I) 
+J 

"' 115 
'0 

I 
» 
+J 
·::;:; 0.2 
§ 
<0 0 3 

0.: t 

(a) 

total 

~12 -8 -4 0 4 8 12 

(b) ~h 

to~~L:J. 

·~ ~~. 
-24 -16 -8 0 8 16 24 

E (eVJ--

Fig .11 Local DOS on the kink-site atom in the core of 30° partial 
dislocation in si: (b) and (c) are the local DOS on the 
kink-site atoms A and B in C crystal, respectively. 

Summarizing the above mentioned electronic structure 
calculations of the dislocations, we can say that there are deep 
centers (associated with the reconstruction defects "soli tons") 
along the straight dislocation line in much smaller density than 
the geometrical dangling bonds. We do not always have the deep 
levels associated with the kink-sites (point like singularities 
along the dislocation line) in the semiconductors c and si. This 
is in consistent with the experimental results that the observed 
reduction in the activation energy (0.68-0.82eV for intrinsic Si) 
of the enhanced dislocation motion under irradiation of electron 
beam or laser light corresponds to the deep energy levels 
associated with the straight dislocation sites (rather than the 
kink sites) [ 5]. 

4. CONCLUSIONS 
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Using the LCAO recursion method of sp3s* basis orbital, we 
have investigated the atomic configurations and electronic states 
of dislocation in covalent semiconductors. Particular attention 
has been paid on the determination of gap states associated with 
the straight dislocation line as well as the point-like 
singulari ties like "soli ton" or kink-site atoms. It is shown that 
point like singularities "soli tons" in the dislocation core can 
produce prominent deep levels in the band gap, and they are 
expected to act as ( non-radiative) recombination centers of the 
injected carriers. Although such possibility has already been 
pointed out by Jones et al. [ 8), the present theoretical findings 
are distinct from the previous ones, since the prominent deep 
centers can appear for the reconstructed dislocation core with 
small atomic displacements. Furthermore, we have found that the 
kink-site atom do not always produce the deep levels in the gap 
region because there are four nearest-neighbour atoms and 
cancellation of the electronic effects occurs from compressed and 
stretched bonds. In conclusion, the present theoretical 
calculations are consistent with the previous theoretical analysis 
[ 5 J on the recombination enhanced dislocation motion and the 
experimental observation on the reconstruction of the dislocation 
core in the covalent semiconductors. 
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