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ABSTRACT 

The equilibrium configurations for the cores of [010](001) edge and screw dislocations 
in an anthracene crystal were calculated using the atom-atom potential method. A boundary 
condition has been examined in which molecular rotations were taken into account together 
with translational displacements on the basis of anisotropic elasticity. The edge dislocation 
had a spread-out shear misfit and the width of Burgers vector density at half peak height 
reached 6.2 times the magnitude of the Burgers vector. The molecular configurations for the 
screw dislocation was strongly anisotropic and its core region did not spread. The energy 
of the screw dislocation was lower than that of the edge dislocation. The Peierls stresses 
of both the edge and screw dislocations were estimated by means of increasing gradually 
an external stress. That of the screw dislocation was much larger than that of the edge 
dislocation. 

INTRODUCTION 

In organic crystals, the role of structural defects is important not only in diffusion 
and mechanical properties, but also in many other phenomena such as solid-state reactions, 
photoplastic effects, and the formation of local electronic states of polarization origin and 
exciton trapping states of structural origin [1,2]. To make clear how defects are concerned 
with these phenomena, investigations into the microscopic structure of the defects are es
sential. Computer simulation is used to reveal the details of the local structure around the 
defects. In the case of crystal of aromatic hydrocarbons, such as anthracene, consisting of 
nonpolar molecules, weak intermolecular forces of the Van der Waals force are essential and 
the atom-atom potential methods have been used. 

The equilibrium configuration for the core of a dislocation in a crystal of aromatic 
hydrocarbons was first calculated by Mokichev and Pakhomov [3] for a [010](001) edge 
dislocation in naphthalene crystals. The model used consisted of the inner layer of 72 mobile 
molecules and the outer fixed layer on the basis of isotropic elasticity. The Peierls stress in 
organic crystals was first obtained for polyethylene in an orthorhombic phase using computer 
simulation by Bacon and Tharmalingam (4]. However, for aromatic hydrocarbons, such as 
anthracene, any calculation of the Peierls stress has not been reported yet. 

In anthracene crystals, a (001)[010) slip system and a (001)[110) system are dominantly 
operative [5,6,7]. In present paper, we will report the molecular configurations around a 
[010](001) edge dislocation [8] and a screw dislocation, and their Peierls stresses [9]. One 
problem of particular interest was what structure of the dislocation core is realized in the 
crystal composed of disk-like molecules possessing rigid body. Orientational aspects charac
teristic of molecular crystals were studied in detail. We introduced molecular rotations into 
initial and boundary conditions to a linear approximation, as well as translational displace-
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ments in terms of anisotropic elasticity, because the dimensions of an anthracene molecule 
are as large as the magnitude of the Burgers vector. The Peierls stresses were estimated by 
means of increasing an external stress step by step until the dislocation moved over a length 
of an unit lattice vector. 

The molecule was assumed rigid and the atom-atom potential method was used. Both 
the methods of static energy minimization and of molecular dynamics were used to obtain 
equilibrium configurations. A model of size sufficient to study the molecular configurations 
in crystals composed of the large molecule was adopted with the aid of a supercomputer. 

POTENTIAL AND METHOD 

A perfect crystal of anthracene with monoclinic symmetry (space group P2J/a) has 
two nonequivalent molecules, one at the corner of a basal unit lattice (hereafter referred to 

'as a corner molecule), and the other at the center (a center molecule). There are a glide 
symmetry between these two kinds of molecules and a twofold screw symmetry. 

We begin by constructing the regular lattice, which is stable under a given potential. 
The functional form used for the atom-atom potential is the Buckingham function 

where r;j is the distance between non-bonded atoms and A, Band Care empirical parameters 
presented by Williarns (10] in set IV [11,12,13]. The cut-off radius of interaction between 
atoms was 8 A throughout this paper. The evaluated lattice constants using this potential 
were ao = 8.18 A, bo = 5.91 A, Co = 11.17 A, f3 = 2.16, e = 1.17, </> = 1.11 and 1/1 = 1.91, 
and the packing energy per molecule was 1.02 eV. 

Our model for dealing with the relaxation of molecules around the dislocation consists 
of two layers. One is the outer rigid layer where molecules are held in the positions described 
later. The other is the inner layer, which consists of the relaxable molecules whose centers 
lie within the cylinder of radius rrel with its center at the dislocation line. An anisotropic 
linear elasticity of the dislocation is used in those layer. Translational displacements u in 
terms of anisotropic elasticity can be derived from the general equation given by Hirth and 
Lothe [14). The elastic constants used there are obtained by constituting strained lattices 
and differentiating their energies numerically by the strains. 

In addition to translational displacements, we introduce molecular rotations into the 
initial and boundary conditions to a linear approximation, because the dimensions of ari 
anthracene molecule are as large as the magnitude of Burgers vector. Molecular rotations 
proportional to strains are estimated from displacements and the changes in Euler angles 
per unit strains. Deformations, in general, are accompanied by rigid body rotations (trotu) 
and these also cause molecules to rotate. The magnitudes of these rotations are estimated at 
the center of molecules, and these two kinds of molecular rotations are added. To simulate 
an infinitely-long, straight dislocation, periodic boundary conditions are imposed along the 
dislocation line. 

To obtain the equilibrium configuration of molecules in the inner layer, we have 
tried both the methods of static energy minimization and molecular dynamics. In the 
static minimization, a method of steepest descent is applied repeatedly until all matrices 
(tP EMR./8x;8x;) become positive definite and remain so for about ten steps (where EMR de
notes the energy of a molecular row parallel to the dislocation line). Then a Newton method 
is used to make convergence rapid. In the molecular dynamics, the crystal is quenched ev-
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Figure 1. Projection in the be' 
plane of molecular centers after re
laxation and equipotential curves 
D.u (in eV). Crosses denote the cor
ner molecules and circles denote the 
center molecules. 
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ery time the total kinetic energy reaches a maximum [15]. It was confirmed that the two 
methods gave the same result as regards the molecular configurations. 

To evaluate the effects of the model size on molecular configurations, several runs were 
made using rrel=4b (24 A) "' 16b (96 A). It was confirmed that rrel = 16b was sufficient 
to obtain the equilibrium configuration. Results of calculations, which will be shown later, 
were obtained by the use of this size. 

THE EDGE DISLOCATION 

The center of the dislocation for the initial and boundary conditions was put at the 
point where the energy after relaxation were minimum. The coordinate of that point was 
(y, z) = (tbo, ~c~J), where do is a unit length of the c' axis. The upper limit of convergence 
error was estimated to be 4 me V /a0 for the largest model with rrel = 16b (96 A, 1062 
molecules in the inner layer). 

Equilibrium configurations around the edge dislocation 

Figure 1 shows a projection in the bd plane of molecular centers after relaxation and 
equipotential curves D.u around the dislocation; D.u is the packing energy per unit lattice 
relative to that of a perfect crystal. It is obvious that the dislocation has a spread-out 
shear misfit along the slip plane, and that a rectangular region where the energies L':.u are 
almost equal exists around the center of the dislocation. The plane AA' through the center 
of the dislocation is almost a symmetry plane. Equipotential curves became smooth only if 
the energies of a corner molecule and a center molecule were summed, because effects of the 
shear strain t:2a on two kinds of molecules are different; for example, energies of molecules just 
below the slip plane are 30 me V (l2 = -~,where l2 denotes the lattice site along x2 direction), 
45 (-1), 39 (-t), 47 (0), 33 {t), 33 (1), 51(~), 39 (2), 40 (~), 27 (3). The equipotential 
curves are slightly asymmetric in the core region, as pointed out in a naphthalene crystal by 
Mokichev and Pakhomov [3]. The high energy region spreads widely, in comparison to the 
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Figure 2. 
Orientational aspects of 
molecules around the dis
location: (a) projection in 
the ab plane of center mol
ecules, (b) changes in Eu
ler angles of the center 
molecules in the ab plane 
just below the slip plane, 
and (c) those of the corner 
molecules. 
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The distribution of strain e22 in the direction parallel to the slip plane was also calcu
lated. The value of the strain is small even in the core region since the core spreads wide. 
Its maximum value is only 7% in the upper half plane and its minimum value is -5% in the 
lower half plane. 

Orientational aspects of molecules around the dislocation were investigated in detail. 
It is shown in figure 2(a) that the changes in the Euler angles are larger on the side with the 
extra half planes than on the other. The changes in the Euler angles of the center molecules 
in the plane just below the slip plane are shown in figure 2(b), and those of the corner 
molecules are shown in figure (c). It is obvious from these diagrams that the changes reach 
maxima not at the center but at the distance 2b "' 3b from the center of the dislocation; 
6,.() = 6.5", D.rP = 4.6", D..,P = 10.7". Curves in (a) and (b) indicate that there is some 
approximate symmetry between the corner and the center molecules with respect to the 
plane AA'. That symmetry is glide-symmetry-like; this may come from the fact that there is 
the glide symmetry between the two kinds of molecules in the perfect crystal and the shear 
stress around the dislocation is antisymmetric with respect to the plane AA'. It would be a 
true glide symmetry if two kinds of molecules were distributed continuously in each plane. 

Distribution densities of the Burgers vector 

Figure 3 shows distribution densities of the Burgers vector along the basal slip plane, p11 
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Figure 3. Distribution densi
ties of the Burgers vector along 
the basal slip plane, Pv and Pz· 
Crosses: Py before the relaxation; 
squares: Py after the relaxation; 
triangles: Pz after the relaxation. 
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Figure 4. A projection in the ac plane of \ 
a perfect crystal. Crosses denote the corner 
molecules and circles denote the center mole
cules. The influence on the dislocation energy 
of changing the position of the dislocation for 
the boundary condition was evaluated on the 
lines HH' and VV'. 
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and Pz [16]. The density after relaxation deviates substantially from that before relaxation 
in a wide range from the center to about 8b. The core of the dislocation was not dissociated 
into two typical partials, but was spread widely. The width of the core at half peak height is 
large, being 6.2b for the relaxed crystal, in comparison with 2b for the unrelaxed crystal. It 
is seen from the Pz in the figure that only the molecules close to the center of the dislocation 
deviate from the molecular plane, and that this deviation is small. 

THE SCREW DISLOCATION 

Figure 4 shows a projection in the ac plane of a unit cell of a perfect crystal. The 
perfect crystal of anthracene has a twofold screw axis parallel to the b axis at the point 0. 
The coordinate of the point 0 is ~ao + teo, where ao and eo are unit lattice vectors. The 
dislocation line is set to run along the b axis. 

To search for an adequate position of the dislocation for the initial and boundary 
conditions, the center of the dislocation was put at various points along the lines HH' and 
VV' in the figure. The energies after relaxation were compared for these cases using the 
relaxation radius rre1 = 6b. Among the dislocations with centers on the line HH', that with 
its center at the point 0 has the lowest energy and that with its center at the point H1 has the 
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Figure 5. A projection in the ac 
plane of molecular centers around a 
[010](001) screw dislocation. b. de
notes the center of dislocation; o the 
center molecule; x the corner molecule. 
The length of arrows indicates the mag
nitude of the strain e29 • The molecule 
to which an arrow point is more dis
placed along x 2 direction than the other 
molecule connected by the arrow. 
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highest energy. Inequality between 0 and H1 comes from the fact that the direction of the 
corner molecule is different from that of the center molecules. Among dislocations centered 
on the line VV', that with its center at the point 0 has the lowest energy. Consequently the 
center of the dislocation will be set at the point 0 in the following simulations. 

Equilibrium configurations around the screw dislocation 

Figure 5 shows a projection in the ac plane of molecular centers and the distribution 
of a shear strain E29 (1/r 8u2/8(), where() is an angle from the X1 axis) after the relaxation. 
the distribution of the strain e2e is strongly anisotropic even in a elastic solution. It is due 
to anisotropy of elastic constants. 

A elasticconstant ~929 in terms ofthe cylindrical coordinates (r, (), x2) has a minimum 
value, 1.46 GPa in the direction of() = 40.3", and a maximum value, 4.78 GPa in the direction 
of()= -49.7". Since the latter is 3 times larger than the former, the distribution of the strain 
E2e is strongly anisotropic. The direction for the smallest elastic constant is approximately 
normal to molecular planes and rotations of molecules are easy when a shear stress is applied 
in that direction. 

The distribution of a shear strain e29 is not influenced by the relaxation on the slip 
plane AA'. Rotations of molecules around normal axes of molecules contribute to the strain 
on that plane, so that the strain can concentrate near the dislocation center to the same 
extent as in the elastic solution. The maximum value of the strain reaches 20%, while that 
of a compressive strain was only 5% around the edge dislocation. The distribution spreads 
out a little on the planes BB' and CC', on which molecules 'lie closely and the strain is 
prevented from concentrating in a narrow region. Shear strains at the point D and D' are 
large, but actual displacements are slight due to the fact that the angles subtended by the 
dislocation center are small. Figure 6 shows distribution densities of the Burgers vector 
along the basal slip plane, p11 (x ). The density after relaxation deviates only a little from 
that before relaxation. 

The molecular configuration, concerning positions and orientations, has a complete 
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twofold symmetry with respect to the dislocation center, while that of a perfect crystal 
has a twofold screw symmetry. The changes in Euler angle reach maxima near the center; 
AB= 6.3", Aif> = 1.2" and At/;= 14.5". The changes in At/; are large and this indicates that 
rotations around the normal axes of molecular planes are main ones in the core of the screw 
dislocation. 

Energy distribution 

The energy distribution spreads a little along the slip plane near the center, and in the 
region far from the center, though the energy is low, it spreads in the direction of e = 40" 
from a axis. A high energy region does not, however, spread so much as that of the edge 
dislocation. The maximum value of the strain energy at the dislocation center is 0.02 eV 
smaller than that of the edge dislocation, although the shear strain of the screw dislocation 
is large at the center. 

The strain energy W per repeated distance b0 of an screw dislocation may be written 
as 

W = Ed ln(R/ro) 

where Ed is called the prelogarithmic energy factor, r0 is called the effective core radius and 
R is the outer radius of a circular cylinder within which the energy is evaluated. The value 
of Ed was estimated to be 0.27 eV fb0 from the anisotropic elastic constants for the screw 
dislocation, 0.60 eV fa0 for the edge dislocation. 

A prelogarithmic energy factor of the screw dislocation after the relaxation is 0.27 e V /b0 , 

which agrees very well with that from the elasticity, and is smaller than that of the edge 
dislocation, 0.57 eV fa0• An energy within the cylindrical region of radius 5b0 is 0.64 eV fb0 , 

which is smaller than that of the edge dislocation, 1.28 eV fa0 • These show clearly that 
the energy of the screw dislocation is lower than that of the edge dislocation. The effective 
core radius ro was estimated to be 0.45b0 for the screw dislocation, and 0.53b0 for the edge 
dislocation. 
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PEIERLS STRESS 

Method 

The model of crystal is the same as that used for the determination of the structure of 
dislocation. The Peierls stress can be obtained using the following iterative procedures. The 
stable molecular configuration around the dislocation under no external stress (i.e. Uex = o), 
such as obtained in the previous section, is taken as the initial state. 

The external stress is increased by t:.u ex at the beginning of each step. In the present 
calculation, the increment t:..uex has only one component e23• We take 2x 10-4 and 1 x w-2 p. 
as the value of the increment for the edge and the screw dislocation, respectively, where p. 
is the shear modulus; p. = (c44 C(;6 - c46

2) 112 = 2.65 GPa. All the molecules in the crystal 
are translated in proportion to the strain caused by the external stress. In addition to this 
translation of molecules, the molecular rotation corresponding to the strain is taken into 
account to a linear approximation, as described above. 

Then the relaxations are repeated until any component of the displacement vectors of 
relaxable molecules during one relaxation process becomes less than certain criterion [17]. 
As the value of the criterion, we adopted 1 x 10-5 (in A or rad), because the same results 
were obtained for the criterion smaller than this. We employed only the Newton method 
with line search as the relaxation method. 

After the relaxation, the position of the dislocation is examined; the position along the 
slip plane is defined as 

Yd = I ypll(y)dy 

1 P11(y)dy 
and 

for the edge and the screw dislocation, respectively. If the position of the dislocation moves 
more than one lattice repeat distance from its initial position, the external stress at that 
step is regarded as the Peierls stress. 

Results 

In the case of the edge dislocation, the value of the Peierls stress decreased largely 
as relaxation radius increased, but it saturated for the model larger than. rre1 = Bb. The 
extrapolated value of the Peierls stress to infinitely large model, rp( edge), was 0.8 "' 1.0 x 
10-3 p.. In the case of the screw, the value of the Peierls stress was quite little affected by 
the choice of the model size. The extrapolated value to infinitely large model, rp(screw), was 
1.9 "' 2.0 x 10-1 p.. From comparison between the Peierls stress of the edge and that of the 
screw, it is surmised that the plastic deformation in the present slip system of anthracene 
crystals would be controlled by the screw dislocations at low temperature. 

DISCUSSION 

It was found that the edge dislocation in an anthracene crystal had the spread-out 
shear misfit along the slip plane. The distribution density p11 of the Burgers vector along the 
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slip plane deviated largely from that of the elastic solution in the wide range from the center 
to a distance Bb. This seems to be a characteristic feature of aromatic crystals, because 
strains could not converge into a narrow region due to the large rigid bodies of molecules. 
This dislocation had some symmetry, which looked like a glide symmetry. 

The distribution of the shear strain e29 around the screw dislocation was strongly 
anisotropic and the molecular configurations had a complete twofold symmetry with respect 
to the dislocation center. Its core region did not spread unlike that of edge dislocation. The 
shear strain that was a main strain in the screw dislocation could become large near the 
dislocation center, since rotations of molecules around the normal axes of molecules were 
easy and contributed to this strain. The energy of the screw dislocation was, however, lower 
than that of the edge dislocation. 

It was found from the present simulation that the value of the Peierls stress of the screw 
dislocation was much larger than that of the edge dislocation. This is consistent with the 
relation of the core widths of the dislocations, i.e., that the core width of screw is narrower 
than that of the edge. The anthracene crystals is brittle below about 100 K, and fractures 
by the external stress without plastic deformations. The extrapolation of yield stress to 0 K 
using the experimental values at the temperature from 110 to 150 K gives 4.6 x 10-3 f-L [7]. 
This value is between the calculated Peierls stress of the edge and that of the screw, but the 
latter is considerably high. 

To investigate the causes for the high Peierls stress of the screw, we tried to elucidate 
the shape of the Peierls potential. The dislocation whose center is put on arbitrary position 
in a unit lattice as an initial condition moves to the position such that the whole energy is 
minimized by the relaxation. The whole energy after the relaxation would be expressed as 

E(xt, x;) = Ep(xt) + Einc(x;, Xt), 

where x; and Xt indicate the positions of the dislocation along the slip plane before and after 
the relaxation, respectively. The first term on the right side, Ep(x1), represents the Peierls 
potential, and becomes minimum at Xt = x0, where x0 corresponds to the point 0 in figure 4. 
The second term, Einc(x;, Xt), denotes the elastic energy caused by the inconsistency of the 
position of the moved dislocation with that in the outer fixed region. We supposed this 
energy to be expressed as 

Einc(x;, Xf) = ~k(xf- x;)2, 

where k is constant. The dislocation is in equilibrium after the relaxation so that dfdx1 Ep(x1) 

= -k(xf- x;). The relation between Xt- x0 and Xf- x; can be actually obtained from the 
computer simulation, as shown in figure 7(a). This relation is obviously linear so that we 
may put xr- x; = -g(xf- x0 ), where g is constant. The estimation of the gradient g gives 
3.46. Using this relation, the functional form of the Peierls potential is determined as 

Ep(xt) = ~gk(xf- xo? 

and the whole energy E is rewritten as 

E(xt) = ~C(xt- x0 )
2

, 

where C = gk(1 +g). The coefficient C can be obtained from the simulation, as shown in 
figure 7(b). The estimation of the value of C gives 4.85 x 10-1 eV Ja0

2 b0 so that k=25.5 MPa. 
Thus, we obtain the Peierls potential between Xt = t- 0.114 and x1 = t + 0.114 (in a0 ), 

which are referred to as A and B, respectively, below. In the vicinity of the minimum of the 
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Figure 7. The relation between xr- Xi and x1 - x0 (a) and the that between E and 
Xt- Xo (b). These relations were obtained using the model size rre1 = 6b. 

Peierls potential, A-B, the potential curve is smoothly parabolic and there is no section at 
which the gradient is so steep that the Peierls stress becomes very large. 

By the relaxation under the condition that the twofold symmetry with respect to the 
dislocation center is conserved, the screw dislocation centered on the position H1 in figure 4, 
which corresponded to the saddle point in the energy space, can be relaxed remaining its 
center fixed at the position (xr = Xi = tao); its energy is 2.23 x 10-2 eV fb0 • There would 
exist the section with the large gradient causing the high Peierls stress in the range in which 
the Peierls potential cannot be estimated. 

To confirm that the high Peierls stress is caused not by an undesirable behavior in 
numerical treatments (such as falling into a local minimum), but by the characteristic fea
tures in anthracene crystals, we also tried to perform the molecular dynamics, in which the 
potential barrier between a local and the absolute minimum can be overridden owing to the 
kinetic energy. The model crystal is the same as that used in static method, and only the 
molecules in the inner region can move under the condition that the temperature and the 
strain applied to the outer fixed region is kept constant. The periodic boundary condition 
used above is applied also in this case. It should be noted that this calculation using molec
ular dynamics is performed not to reproduce actual phenomena, but to confirm the result 
obtained at 0 K. 

Figure 8 shows the time ·developments of the center of the dislocation under the stress 
Uex = 10-1 JJ at the temperature of 15, 20, 25 and 35 K. The screw dislocation can move 
above 25 K, but does not move within 35 pico second below 20 K. Making the several similar 
runs using the different values of the external stress, we obtained the relation between the 
temperature and the external stress which could move the dislocation within 35 ps, as shown 
in figure 9. This figure means that the macroscopic plastic deformation takes place easily on 
the right of the curve, and is hard to take place on the left of that. Even under a half stress 
of rp(screw), the dislocation must override the barrier corresponding to 20 K. This diagram 
shows that the calculated Peierls stress is not too high in comparison with the external stress 
at low temperature. Hence, it may be sure that the screw dislocation has the high Peierls 
stress within our model. It was also found from this figure that the mobility of the screw 
dislocation has the strong dependence on temperature. This would suggest the possibility 
that the yield stress of anthracene crystals also depends strongly on the temperature at low 
temperature. 
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Figure 8. The time developments of the 
center of the dislocation under the stress 
O"ex = 10-1 J-L at 15, 20, 25 and 35 K. 
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Figure 9. The dependence on temperature 
of the external stress required to move the 
dislocation within 35 ps. The stress at 0 K 
is the Peierls stress. 
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The molecule marked E in figure 5 suffers the quite large forces from the surrounding 
molecules, as shown in figure 10. This would mean that the molecular configuration around 
the molecule E is very stable to the external shear stress a 23 so that the strain caused by this 
stress, particularly e12 , cannot be increased in this region; e12 is significant to the movement 
of the screw dislocation. This seems to result in the high Peierls stress. 

The Peierls stress obtained through the present model may be lowered if something 
which can change the molecular configuration around E, such as the deformation of molecules, 
the effect of the stress component except a23 and so on, is taken into account. Even if the 
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value of the Peierls stress of the screw dislocation were lowered, however, from comparison 
between the core width of screw dislocation and that of edge, it would be certain that the 
plastic deformation in present slip system is controlled by the screw dislocations at low 
temperature. 
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