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The variously developed approaches to determine the strength and toughness of 

dispersion containing ceramics are reviewed. They are then compared with observations of 

model duplex ceramic materials and ceramic-diamond composites. A simple fracture 

mechanics basis is developed to rationalise the strength data. This relationship provides a 

sounder basis for explaining the strength of dispersion containing ceramics than a recently 

proposed empirical expression. 
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Introduction: 

It is well known that the presence of impurities or inclusions in glasses or ceramics 

may or may not influence the strength significantly.i-7 It has been observed that mismatch 

of thermal expansion coefficients of inclusions and matrices results in intense stress fields 
1-7 

about and within the inclusions which build up during cooling after fabrication. The 

presence of such stress fields severely affects the mechanical behaviour of a homogeneous 

brittle matrix material. These stresses, particularly when the inclusion is under 

compressive stress resulting in tensile circumferential hoop stresses are often the source of 

crack initiation. Subsequent growth of such cracks are influenced by the spatially varying 

stress fields in a dispersion containing matrix. These stresses may deflect, attract and even 

trap the embryonic crack depending upon whether the hydrostatic stress within such 

inclusions is tensile or compressive. h 4-7 Such crack deflection and trapping in the case of 

homogeneously dispersed inclusions leads to an increase in fracture toughness of the 

composite material. 

A considerable debate on the mechanisms responsible for the influence of dispersed 

inclusions on the strength and toughness of brittle materials has developed over the last 

few decades. Frey and Mackenzie8 explored the influence of dispersions of Al20s and Zr02 

in glass on the strength and found that it increased in direct proportion to the increase in 

elastic modulus of the composite. Hasselman and Fulrath9, who investigated a range of 

metal and ceramic inclusions in glass, proposed that the role of the dispersions on the 

strength was to limit the flaw size to the interparticle spacing, thereby increasing the 

strength with increasing volume fraction. Miyata and Jinno10 proposed an alternative 

explanation in that the presence of the dispersed particles initially lowered the strength 

through the development of a bigger flaw than present in the matrix glass. However, up to 

this stage none of these authors considered the thermal expansion mismatch effects. 
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Borom 11 in an excellent review of the data available at that time was able to 

rationalise the approaches of Frey and Mackenzie8 and of Hasselman and Fulrath. 9 

However he convincingly demonstrated that, the up to then overlooked residual stress state 

due to thermal expansion mismatch played a critical role. In the glass ceramic materials 

he investigated he found that if the thermal expansion mismatch was too great then 

cracking developed at the interface between the higher thermal expansion crystals and the 

lower thermal expansion matrix. The extent of strengthening appeared to be dependent 

upon the size and volume fraction of the crystalline phase, there being essentially minimal 

difference in elastic modulus of J:?oth phases. Borom 11 proved beyond doubt the importance 

of the residual stress by observing a monotonic decrease in strength of the glass ceramic 

with increasing temperature up to the softening temperature. 

More recently Miyata and colleagues12.13 have investigated the influence of alumina 

particles in two glasses with differing thermal expansion coefficients as well as a model 

glass-glass composite system in which the thermal expansion coefficient, diameter and 

volume fractions were varied. The presence of the alumina initially decreased the strength 

but with increasing volume fraction it increased, whereas the toughness measured using 

pre-<:racked notched bend tests monotonically increased with volume fraction of alumina 

giving results identical with those of Swearengen et al. 14 Miyata et al 12 did notice that the 

initial decrease in strength was dependent upon the particle size whereas the toughness was 

nearly independent of size. The excellent model glass sphere-glass matrix composites 

confirmed Miyata's previous data. However in this system the glass beads used were of 

equal or lower thermal expansion coefficient than that of the four matrices used. In all 

instances the strength decreased when a thermal expansion mismatch existed whereas the 

toughness initially increased then decreased to a value equal to or below that of the matrix. 

The influence of particle size confirmed their previous data in that for an identical volume 

fraction the strength decreased with increasing particle size, the toughness on the other 

hand increased with particle size. These results were similar to the more complex 

alumina-zirconia composite materials developed by Claussen et al 15 who also explored the 
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influence of particle size and volume fraction of monoclinic zirconia particles. Miyata et al. 

followed the interpretation of Kreher and Pompe16 of Claussen's data in that the increased 

toughness was due to the development of a microcrack process zone about the crack tip. 

More recently Lutz et al. 17- 19 have investigated another model system consisting of 

" alumina-monoclinic zirconia spheres in various matrices. The magnitude of the 

compressive stress within the inclusions could be easily modified by changing the volume 

fraction of monoclinic zirconia. The volume fraction and size of these inclusions was also 

investigated. These authors were able to rationalize the strength of a very large number of 

these materials based upon an empirical parameter, Ki, termed the "internal stress 

intensity factor". This term is defined by the following expression, 

(1) 

where (J 0 is the hoop stress at the inclusion interface and R is the inclusion radius. These 

authors also incorporated a modification of the magnitude of the stress within an inclusion 

from that proposed by Selsing20 for an isolated inclusion in a matrix. They used the 

approach developed by Lundin21 who considered the residual stress state in a porcelain due 

to the presence of quartz grains. 

The aim of this study is to extend the previous approaches mentioned above and 

apply the results to some recently developed ceramic-diamond composites. Initially the 

residual stress state in a dispersion containing material is reviewed then a simple fracture 

mechanics analysis for the onset of cracking will be developed in an endeavour to justify 

the Ki parameter mentioned above. 

Theoretical Considerations 

The state of residual stress about an isolated particle in a matrix has been given by 

Seising. 20 The magnitude of the hydrostatic residual stress within the inclusion is 
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pT = -KeT where eT is the volumetric strain due to thermal expansion mismatch and any 

volumetric phase transformation dilational strains and K is the bulk modulus. The value 

of eT for such particle is given by 

T !1V 
e = v + 3(ai- am)11T (2) 

where !1 V is the volume dilation due to the phase transformation, ai and am are the 

thermal expansions of the inclusion and matrix and !1 T is the temperature difference 

between ambient and softening temperature of the matrix. According to Selsing20 the 

hoop, a(}' and radial, ar, stresses are given by 

(3) 

where 

The approach proposed by Lundin 21 considers the inclusion of radius RB embedded 

in a homogeneous matrix sphere of radius RA. Assuming a densely packed system and 

stress free voids the hydrostatic pressure within the inclusions is, 

where ai = a2/[a3 + a4(RB/RA)3) 

T 
a2 = 2EAEB e /3 

a3 = 2E A (1-2 vB) + EB(1+v) 

a4 = 2[EB(1-2 v A)-EA (1-2 vB)] 

(4) 

where A and B refer to the matrix and inclusion respectively. The consequences of this 

model is that the hoop stress about the inclusions does not asymptotically approach zero as 
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r becomes large as suggested by equation (3) but rather has a minimum value whereas the 

radial stress becomes zero at the outer shell boundary, that is 

Ur =- a1(RB/r)3 [1- (r/RA)3] 

u0= ~(RB/r)3 [1 + 2(r/RA)3J (5) 

A more rigorous estimation of the stresses about an inclusion in a dispersion 

containing matrix has been developed by Bettles and Johnson22, and is given by 

(6) 

where A= Lame's constant, K' is the bulk modulus, J.t the shear modulus, Vt the volume 

fraction of inclusions and Y = [(1+v)a6T/3(1-v)]. The constants C2 and D2 are functions 

of the composite bulk modulus and thermal expansion and are solved for implicitly to 

determine these material quantities. 

A fracture mechanics analysis of the stress intensity factor for a radial crack about 

an isolated inclusion has been discussed by a number of authors. Marshall and G~een23 

have compared various proposed expressions and convincingly demonstrated that the most 

appropriate relationship is 

(7) 

where c is the crack length. A maxima occurs at c/R = 1.29 with KR..fi/ urV£{ = 0.44 

leading to a critical inclusion size Re. Inserting KR = K1c of the matrix material leads to 

a value of 
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(8) 

For a well developed penny shaped crack ( c > R) a simpler expression for KR is 

given by 

(9) 

leading to an equilibrium crack of size c0 about a super critical sized inclusion of, 

(10) 

In the presence of an applied stress era the stress intensity factor for a crack about 

an inclusion is given by 

K = Ka + KR 

K = ifJ CTaVa + ifJu (Rj1r-)t (R/a//2 
r 

(11) 

The critical applied stress for instability of this system has been discussed by Swain. 6 

An alternative perspective of particulate reinforced materials has been developed by 

those considering the toughness of such composites. Taya et al. 24 have recently reviewed 

this topic and attempted to rationalise the toughness of a SiC - TiB2 composite. These 

authors supported previous studies by Evans et ai.25, Cutler and Virkar26 in that the major 

toughening contribution is due to 'the periodic tension - compression residual stress. The 

toughness of such a composite is given by 
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(12) 

where Ko is the matrix toughness, uq the (mean) residual stress and D is the average inter 

particle spacing. These authors used the Eshelby model to determine an averaged internal 

stress in the inclusions with a compensating (for volume) opposite stress in the matrix. 

Taya et al. 24 show that the mean stresses in the inclusion <up> and matrix <um> are 

* <E0> __ 2(1-f 0),8a1 
m - A 

and 

(13) 

* where A= (1-fp)(,B+2)(1+vm) + 3,Bfp(l-vm), a 1 is the mean thermal expansion mismatch 

and ,B = [i ~ 2~PJ[t] 

A more sophisticated model of the toughening of such a dispersion containing 

material has been proposed by Bennison and Lawn. 27 However in their approach they 

propose that the particles act as bridging sites and that the closure forces so developed 

generate R--eurve behaviour over a range dictated by the critical crack opening 

displacement that causes bridge fracture. This approach has been applied to alumina 

ceramics with the bridges being a consequence of frictional grain interlocks and is able to 

successfully explain the grain size dependence of strength. 

Experimental Details 

Emphasis will be placed on the alumina-alumina zirconia duplex ceramics 

developed by Lutz and Claussen l7dS and the ceramic-diamond composites developed by 

Bettles and Swain. 28 The former materials were prepared by conventional sintering 

whereas the latter were prepared by hot pressing. Details of the processing conditions have 

been published elsewherelMS. 
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The strengths of the former were determined in four point flexure whereas the 

ceramic-diamond composites were measured with the ball on ring biaxial strength method 

using small12-15 mm diameter plates approximately 1 mm thick. 

For one system the residual stress within the composite was determined using 

precision neutron diffraction methods. Observations of the lattice spacing of the diamond 

before and after incorporation in alumina were determined. 

Observations and Discussion 

i) Residual stress observations 

The neutron diffraction pattern of the diamond before and after fabrication of the 

alumina-diamond composite, 29 revealed a clear shift to higher angles of the major peaks of 

the diamond in the diamond-alumina composite. The diamond particle size was 3-5 pm 

and below that necessary to initiate radial cracks about the diamonds. The shift in the 

peak position corresponded to a change in lattice parameter of 0.00374 nm or a volumetric 

strain ET of- 0.315%. This value corresponds to a hydrostatic compressive stress within 

the diamond of 1.49 GPa which compares with the value of fT calculated from equation (6) 

using ani = 5.4 *10-6 /K ; a Al
2
0 

3 
= 10.1 *10-6 /K , Kni = 565 GP a and ~ T = 1100 K, 

giving Pt = 1.80 GPa. The values calculated from the analysis of Lundin21 (eqn. 4) were 

1.80 GP a and according to Taya et al. 24 ( eqn. 13) were 1.92 GP a. 

The relatively good agreement between the simple expression developed by Lundin 

and that of equation (6) is surprising. The limited analysis presented in the thesis of 

Lundin makes it difficult to justify such agreement. The approximate 20% over estimation 

of the magnitude of the residual stress maybe reduced by a slight reduction of the ~ T or a 

values used in these calculations. 

ii) Ceramic-diamond composites 

Observations of the variation of strength of a range of ceramic-diamond composites 

is shown in Figures 1-5. Apart from the cordierite system and to a lesser extent the 
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Figure 1. Normalised strength data for alumina-<liamond composites as a 
function of volume fraction of diamonds and diamond particle size. 
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Figure 2. Normalised strength for 3Y-TZP-<liamond composites as a function 
of volume fraction of diamonds for fine (0.5- 3 um) and coarse 
( 20 - 35 urn) diamonds. 
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Figure 3. Strength of aluminium nitride-diamond composites for coarse 
grained diamonds as a function of diamond content. 

aluminium nitride composite the strengths show a systematic reduction with volume 

fraction of diamond. The strength degradation shows a profound influence on diamond 

particle size. The cordierite is the only matrix that has a lower coefficient of thermal 

expansion ( CTE) than that of the diamonds. The aluminium nitride has a CTE 

comparable to that of diamond whereas that of the alumina, zirconia and chromium 

carbide are much greater. 

The plots of strength of the ceramic diamond versus the empirical relationship Ki 

proposed in equation (1) were completely unsatisfactory. Matrix materials with low values 

of fracture toughness appeared to fall on different trend lines from those with higher 

toughness values. Previous data generated by Lutz and Claussen 18 for matrices of alumina 

and tetragonal zirconia-alumina fell on an almost universal curve as shown in Figure 6. 
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Chromium Carbide-Diamond Composites 
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Figure 4. Normalised strength data for chromium carbide-diamond composites 
containing coarse diamonds as a function of the volume fraction of diamonds. 
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Figure 5. Normalised strength data for cordierite-diamond composites as a 
function of diamond content for two size fractions of diamonds. 



112 

In an attempt to rationalise the ceramic-diamond composite strength data an 

alternative basis for interpretation is explored using a modification of the Evans et al. 25 

approach which was developed to rationalise toughness of dispersion containing materials. 

This has a distinct advantage in that there is then a more logical basis for a continuum for 

tensile or compressive stresses within the matrix. If we assume the strength of the 

composite is determined by that of the matrix alone, which is given by the sum of the 

compensating mean matrix stress due to the inclusions plus the applied stress, then 
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Strength data for a range of duplex ceramics of Lutz & Claussen 
normalised to the matrix strength and plotted versus Ki (equ.l). 
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where cro is the initial strength ofthe matrix and <crm> is the mean tensile or compressive 

stress calculated from the expressions given by Taya et al. 24 Normalizing the above 

relation leads to 

(15) 

This expression suggests there is virtually no influence of inclusion particle size on the 

strength which does not agree with the observations in Figures 1 - 5. It would appear that 

only by considering a defect or flaw size related to the inclusion size, as previously 

suggested by Miyata et al13, or the interparticle spacing as proposed by Hasselman and 

Fulrath9 is it possible to improve on this approach. This is most readily seen with a 

fracture mechanics approach, where the crack tip stress intensity factor is given by 

Matrices 
K = Ko + Ka (16) 
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Figure 7. Normalised strength data from Figure 7 and from Miyata et al 
plotted against Ki and showing the unsatisfactory agreement between the 
various materials. 



114 

Assuming that the :flaw size of the composite is c, which may be equal to the inclusion 

radius plus the pre-existing :flaw size or the interparticle spacing, that is 

or 

then 

c= R+ a 

c = 1 = 4R(l-V )/3V 
f f 

(17a) 

(17b) 

(18) 

If we let K = K1c of the matrix then K1c = a0 .fi3, where a0 is the matrix strength and a 

is the flaw size. Rearranging, the above expression maybe written as 

(19) 
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Figure 8. Normalised strength data from Figure 7 plot versus Ki normalised by 
the matrix K1c as suggested by equations (22) and (23). 
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If c is given by equ(17a), then equ(19) reduces to 

a fa = ~ [1 - <am> JR+aj 
a 0 :rR+i ao a (20) 

In the limit R <<a this is identical to equ(15), whereas if R >>a it reduces to 

(21) 

But < am> = -aN /(1-V ) where ai is the inclusion internal stress. The term < am>J R 
f f . . 

is then 

<am> JR = - ai.JR [V /(1-V )] = --41 K
1
. 

f f 



116 

where Ki is the empirical relation given by equation (1). The normalised strength is then 

given by 

(22) 

where ~'= ~ /2-/?r. 

The alternative expression for c given by equation (17b) leads to a very similar 

expression, namely 

(23) 

where w = 2.j(l-Vr)/3Vr and n = .fV/31r{l-Vr). 

This expression is nearly identical with the empirical Ki relationship and its further 

extension by Lutz. 30 

For many of the materials previously investigated by Lutz and Claussen18 the K1c 

value of the matrix materials was nearly identical and the range of the inclusion sizes 

studied was limited Their data plotted in Figure 6 confirms the basis of the above 

expression. A much broader range of materials including data from Miyata et al13,14 is 

compared in Figure 7 and illustrates the unsatisfactory relationship with Ki" However 

when this data is plotted normalised to the matrix Klc as proposed in equations (22) and 

(23), a much better universal plot of the strength of a large number of dispersion 

containing composites is obtained, Figure 8. 

The ceramic-diamond data is plotted in Figure 9 and again confirms the 

trend in Figure 8. This figure does not include the cordierite data because this material 

would have a negative Ki. The data falls into three regions, those with low Ki values 

which show a monotonic decreases with increasing Ki; the alumina and zirconia 

composites containing large diamonds, with very high Ki values which were micro-cracked 

after specimen fabrication. The chromium carbide-diamond composites also with very 

high Ki values would have been expected to exhibit similar behaviour however microscopic 
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observations revealed considerable reaction between the diamond and the chromium 

carbide during fabrication. This undoubtedly reduced the size of the diamonds and 

changed the stoichiometry of the chromium carbide about the diamond and thereby the 

thermal expansion coefficient, both effects would reduce the calculated Ki value for this 

material. 

The expressions given in equations (22 & 23) enables a basis for the development of 

very strong composites. This is most apparent for the cordierite-diamond composite 

where the lower CTE of the cordierite leads to tensile stresses within the diamonds 

(150-250 MPa) and compensating compressive stresses in the matrix. The maxima in 

strength of this system at 30 volume % diamonds corresponds with the maximum achieved 

density of these composites. At higher volume fractions of diamonds the porosity of the 

composites increases substantially which leads to a reduction in the residual stress 

component and an increase in the flaw size. As discussed by Lutz and Swain31 another 

attractive feature of these materials is that those materials that have a high Ki display 

excellent thermal shock resistance and contact damage tolerance. 

Conclusions 

This study has provided a relatively simple basis for the prediction of the strength 

of dispersion containing brittle composites. A simple expression is derived that appears to 

reasonably well rationalise a large variety of of strength data for duplex ceramics developed 

by Lutz & Claussen as well as a large variety of ceramic-diamond composites. The 

analysis provides a good estimate of the strength of the dispersion containing composite 

provided the matrix is not microcracked due to too severe residual stresses developed after 

fabrication. Also it does not take into account any reaction or reduction of inclusion size as 

observed with the chromium carbide diamond composites. Further extensions of the simple 

analysis developed here to include the observed R-curve behaviour are required before a 

completely satisfactory rationalisation of the strength of these dispersion containing 

ceramics is established. 
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