2-17 La-Co-Fe Compounds; Synthesis and Magnetic Properties

A. Hasebe, K. Endo and E. Otsuki Materials Engineering Laboratory, Tokin Corporation 6-7-1 Koriyama, Taihaku-ku, Sendai, Japan

The effect of transition metals addition on the La-Co-Fe ternary system has been studied. La₂(Co, Fe, M)₁₇ was found to be synthesized with the addition of M=V, Mn, Nb, Mo, Ta, W. La₂(Co, Fe, M)₁₇ has rhombohedral (Th₂Zn₁₇) structure and saturation magnetization of 1.2-0.8T at room temperature, which increases with an increase in Fe content. The La₂(Co, Fe, M)₁₇; (M=Mn, Mo, W) have c-axis magnetization and anisotropic field of more than 1T.

1. INTRODUCTION

The magnetism of rare earth-transition metal compounds originates from the nature of 3d and 4f electrons in the compounds. The essence of the contributions of electrons to magnetic properties can be referred to electron-electron and electron-crystal field interactions. In Ln-Co compounds, only La-Co system is lack of both 2-17 compound and 4f electron, so that the study of this system can offer some information available for considering the origin of formation of 2-17 compound and magnetic properties.

In this paper, synthesis of La_2Co_{17} was attempted by addition of various transition metal elements and their magnetic properties were investigated.

2. EXPERIMENTAL

Alloys in La-Co-Fe-M; (M=V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, W) were prepared by rf melting furnace in purified Ar gas atmosphere, using >99.5% purity metals. The alloy ingots were pulverized to powder $2-5\,\mu$ m in size, followed by compaction under a magnetic field. The compacts were sintered at 1413K-1473K for 2h in vacuum and homogenized at 1073K-1373K for 20h-45h in purified Ar atmosphere.

Analyses of crystal structure and measurements of magnetic properties were carried out as mentioned in previous paper⁽¹⁾.

3. RESULTS AND DISCUSSION

3-1. SYNTHESIS OF La₂Co_{17-x-u}Fe_xM_u

Figure 1 shows the X-ray diffraction patterns of La-(CoFe)-Mo alloys. Almost all the diffraction lines were fitted to Th_2Zn_{17} -type rhombohedral structure. La-(Co, Fe)-M; (M=V, Mn, Nb, Ta, W) also have

 Th_2Zn_{17} -type rhombohedral structure, while the alloys with Cr,Zr and Hf don't form 2-17 compound.

Table 1 shows the lattice parameter obtained by fitting the diffraction lines to the Th_2Zn_{17} -type structure and magnetic properties of $La_2Co_{17-x-y}Fe_xM_y$.

This compound exists in the range of x=0-7 for M=Mn, Nb, Mo, Ta, W, and of x=0-5 for M=V. Beyond the threshold of x, 2-17 compound decomposes to 1-5 and 1-13.

On the other hand, $La_2Co_{17-\times-\upsilon}Fe_{\times}M_{\upsilon}$

Fig.1 X-ray diffraction pattern of La-(CoFe)-Mo alloys.

exists in the narrow range of M content, which depends on additive elements.

It is very interest to consider why 2-17 compound absent in La-Co binary system can be synthesized with the addition of specific elements.

In Ln-3d metal compounds, the crystal structure and lattice parameter have a regular dependences on the atom size of constituent excepting La and mixed valence Ln. Thus the formation of 2-17 compound can simply be governed by the size of atoms in a transition metal sublattice, since valence state of La is +3 like other Lanthanoids.

Figure 2 shows the stability region of

Fig.2 Stability region of comounds in atomic radius of additive elements, r_M.

Fig.3 variation in lattice parameter with Fe content of $La_2Co_{17-x-v}Fe_xM_v$.

compounds plotted against the atomic radius of additive elements, r_{M} .

 $La_2Co_{17-x-v}Fe_xM_v$ exists in the region of $r_M=0.130nm(Mn)-0.146nm(Ta)$. Therefore the atom size of additives is found to contribute to the formation of 2-17 compound in La-Co system. From the viewpoint of mean atom size effect, such as tolerance factor in ceramic materials⁽²⁾ the lattice parameter and formation region of $La_2Co_{17-x-v}Fe_xM_v$ were tentatively correlated to the mean atomic radius of Co, Fe and M. But systematic correlation between them was not obtained.

Figure 3 shows the variation in the

Compound	Structure type	a /nm	c /nm	J(1.5T) /T	μ _{F.U.} /μ _B	H _A /T	EDOM
$La_2Co_{16.3}V_{0.7}$ $La_2Co_{13.7}Fe_{2.6}V_{0.7}$ $La_2Co_{15.8}Mn_{1.2}$	${ m Th}_2 { m Zn}_{17} { m $	0.850 0.852 0.854 0.856	1.235 1.238 1.236	- - 1.09 1.22	- 24.3 27.6	- 1.9	- c-axis
$\begin{array}{c} \text{La}_{2}\text{Co}_{12,3}\text{Fe}_{3,6}\text{mn}_{1,1}\\ \text{La}_{2}\text{Co}_{11,0}\text{Fe}_{4,7}\text{Mn}_{1,3}\\ \text{La}_{2}\text{Co}_{16,7}\text{Nb}_{0,3}\\ \text{La}_{2}\text{Co}_{13,7}\text{Fe}_{3,6}\text{Nb}_{0,2} \end{array}$	${ m Th}_2 { m Zn}_{17}$ ${ m Th}_2 { m Zn}_{17}$ ${ m Th}_2 { m Zn}_{17}$	0.858 0.858 0.852 0.854	1.244 1.249 1.236 1.242	1.22 (1.3) 0.98 1.26	21.0 21.8 28.3	1.4 1.2 -	c-axis c-plane
$\begin{array}{c} La_{2}Co_{11.4}Fe_{5.3}Nb_{0.3}\\ La_{2}Co_{16.2}Mo_{0.8}\\ La_{2}Co_{12.7}Fe_{3.7}Mo_{0.6}\\ La_{2}Co_{2.7}Fe_{3.7}Mo_{0.6}\\ La_{2}Co_{3.7}Fe_{3.7}Mo_{0.6}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.6}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.6}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.6}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.6}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.6}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.6}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.6}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.6}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.6}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.7}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.7}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.7}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.7}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.7}\\ La_{3.7}Co_{3.7}Fe_{3.7}Mo_{0.7}\\ La_{3.7}Co_{3.7}Fe_{3.7}F$	${ m Th}_2 { m Zn}_{17}$ ${ m Th}_2 { m Zn}_{17}$ ${ m Th}_2 { m Zn}_{17}$	0.856 0.852 0.855 0.855	1.245 1.235 1.244	(1.04) 0.84 1.12 1.20	- 18.7 25.2 27.2	1.1 1.4 -	c-axis c-axis c-plane
$\begin{array}{c} La_2Co_{11,2}Fe_{5,3}Ho_{0,5}\\ La_2Co_{16,7}Ta_{0,3}\\ La_2Co_{13,3}Fe_{3,6}Ta_{0,1}\\ La_2Co_{11,6}Fe_{5,1}Ta_{0,3}\end{array}$	${ m Th}_2 { m Zn}_{17} { m Th}_2 { m Zn}_{17}$	0.850 0.851 0.854 0.856	1.235 1.235 1.242 1.248	1.20 1.00 1.18 (1.18)	22.2 26.5	_ _ 1.2	c-axis
$\begin{array}{l} La_{2}Co_{16.5} \ensuremath{\texttt{W}}_{0.5} \\ La_{2}Co_{16.7} \ensuremath{\texttt{Fe}}_{3.9} \ensuremath{\texttt{W}}_{0.4} \\ La_{2}Co_{11.4} \ensuremath{\texttt{Fe}}_{5.4} \ensuremath{\texttt{W}}_{0.2} \end{array}$	Th ₂ Zn ₁₇ Th ₂ Zn ₁₇ Th ₂ Zn ₁₇	0.851 0.853 -	1.231 1.242 -	0.92 1.17 -	20.3 26.2 -	1.9 - -	c-axis

Table 1 Structure and magnetic properties of La₂Co_{17-x-v}Fe_xM_v.

EDOM: Easy direction for magnetization

lattice parameter with Fe content. The lattice parameter increases as Fe content increases and the maximun value of x for existence of 2-17 compound tends to increase slightly with increasing r_{M} . It is reported that Co sublattice sites in Ln_2Co_{17} is substituted by Fe atoms in order of Co(6c), Co(9d) or Co(18h) and Co(18j) in rhombohedral sturcture⁽³⁾. We reported that Fe atoms occupy preferably Co(6c) site in $La_2Co_{17-x-y}Fe_xTi_y$ and $La_2Co_{17-x-y}Fe_xTi_yN$ at x=3.3-6.7⁽¹⁾.

Therefore, Fe atoms occupy Co sites of $La_2Co_{17-x-u}Fe_xM_u$ in the similar order as well.

Cosequently, the formation of 2-17 compound in La-Co(Fe) system requires the addition of specific elements having $r_{M}=0.130-0.146$ nm, but the concept of mean atom size effect is not valid for the condition of formation of 2-17 compound.

3.2. MAGNETIC PROPERTIES OF $La_2 Co_{17-x-y} - Fe_x M_y$

As shown in Table 1, J(1.5T) of $La_2 - Co_{17-x-v}Fe_xM_v$, which increases with an increase in Fe content, is from 0.84T to 1.26T. These values are relatively less than that of candidates for permanent magnets such as Sm_2Co_{17} , $Nd_2Fe_{14}B$ etc. Thus Magnetic moment per formula unit of $La_2Co_{17-x-v}Fe_xM_v$; (x=0) was calculated from the data of J(1.5T), and the magnetic moment of Co atom, μ_{Co} was estimated on the assumption that La and M

 $\mu_{\rm Co}$ of $Y_2 {\rm Co}_{17}$ is $1.63 \,\mu_{\rm B}$ little less than that of pure cobalt⁽⁴⁾, so that the probability of electron transfer from Ln atoms to transition metal atoms may be low. Such a situation must occur in La₂Co_{17-x-0}Fe_xM₀. Thus low $\mu_{\rm Co}$ must be caused by the electron transfer from additive metal atoms to Co atoms. On the other hand, relative high $\mu_{\rm Co}$ for Mn samples can be referred to the low probability of electron transfer or anomaly of moment peculiar to Ln-3d metal- Mn system⁽⁴⁾.

Magnetic anisotropy of La_2Co_{17-x-v} -Fe_xM_v must originate from an anisotropy of Co-Fe-M sublattice, because of the lack of 4f electron in La atom. Y₂Co₁₇, in which Y atoms also have no 4f electron, shows c-plane easy magnetization.

However, introduction of Fe to this compound brings about the c-axis easy magnetization, because Fe atoms substitute preferentially Co atoms in 6c site which has negative contribution to magnetic anisotropy⁽⁵⁾. Therefore, M atoms occupy 6c site in La₂Co_{17-x-u}Fe_xMu; (M=Mn Mo,W), so that the contribution of 6c site to magnetic anisotropy is reduced and c-axis magnetization occurs.

Combining structural and magnetic approaches to $La_2Co_{17-x-v}Fe_xM_v$, it was deduced that the occupation of additive element atoms in 6c site induces the formation of 2-17 compound and c-axis magnetization. In other wards, the nature of 6c site is responsible to crystal structure and magnetic properties of $Ln_2(Co, Fe)_{17}$.

4. CONCLUSIONS

Through structural analyses and magnetic property measurements of La-Co-Fe-M alloys, it was found that Th_2Zn_{17} -type 2-17 compound was synthesized by the addition of transition elements having atomic radius of 0.130-0.146nm, (V, Mn, Nb, Ta, W). La₂Co_{17-x-0}Fe_xM₀ exists in narrow range of M content, while it has high solubility for Fe. The saturation magnetization of this compound is 0.84T-1.26T at room temperature, which increases with an increase in Fe content. Easy direction for magnetization is c-axis for La₂Co_{17-x-0}Fe_xM₀; (M=Mn, Mo, W).

It was concluded that addtive elements occupy preferentially 6c site (dumbbell site), which contributes to formation of 2-17 compound and magnetic anisotropy.

5. REFERENCES

- A. Hasebe, et al, T. IEE Japan, 113-A(4) (1993)292.
- (2) A. Halliyal, et al, Am. Ceram. Soc. Bull. 66(4)(1987)671.
- (3) J.F.Herbst, et al, J. Appl. Phys., 53(1) (1982)250.
- (4) H.J.Schaller, et al, J.Appl.Phys., 43(7), (1972)3161.
- (5) H. Chen, et al, J. Magn. Magn. Mat., 78, (1989)203.