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The Sm2Fe17N3 has excellent intrinsic magnetic properties for permanent magnets. We have developed high 
performance bonded magnets; the (BH)max values of compression-molded and injection-molded bonded magnets 
are 20 and 13 MGOe, respectively. Here, we introduce the present situation and a view of our research on the 
Sm

2
Fe

17
N

3 
magnets. 

1. INTRODUCTION 

High saturation magnetization of an iron nitride 
was reported by Kim and Takahashi in 1972 [ 1]. On 
the basis of the idea that it is necessary to make the 
iron nitride have a large magnetocrystalline anisot­
ropy in order to attain a high coercivity, we started an 
investigation of structural and magnetic properties of 
Fe-N-R ternary system (whereR denotes a rare earth 
element). In 1987, we found out a new compound 
Sm2Fe

17
Nx which is a good candidate for permanent 

magnets [2]. 
The Sm2Fe17Nx is a new type of magnet material 

which is prepared by introducing nitrogen atoms into 
the interstitial sites of the Smle

17 
crystal under a ni­

trogen-containing atmosphere at elevated tempera­
tures. The introduction of nitrogen atoms brings out 
the drastic changes in the intrinsic magnetic proper­
ties. The most excellent magnetic properties can be 
attained in the sample with x=3.0, the saturation mag­
netization being 15.7 kG, the anisotropy field 260 
kOe and the Curie temperature 473 oc [3]. The value 
of the theoretical maximum energy product (BH) 
amounts to 62 MGOe, being a match for the one of th~ 
Ndle14B. 

It has been found that the coercivity of the 
Smle

17
N3 increases with decreasing size of the par­

ticle [ 4 ). Utilizing these favorable characteristics, we 
have succeeded in developing high performance 
bonded-magnets. In this paper, we introduce the pro­
cess of the fabrication of the Smle

17
N

3 
bonded-mag­

nets and the characteristics of the bonded magnets. 

2. PRODUCTION OF Sm
2
Fe

17
N

3 
BONDED­

MAGNETS 

2.1. Preparation of Sm
2
Fe

17
Nx powder 

The typical preparation step for the Sm2Fe
17

Nx 
powder is shown in Figure 1. The host alloy Smle

17 

is prepared by induction-melting Sm and Fe. The 
cast ingot is homogenized by annealing in an argon 
atmosphere at 1000- 1250 °C. The alloy is coarsely 
pulverized and then nitrogenated in a furnace with a 
mixed gas of NH3 and H

2
• The quantity of nitrogen 

uptake into the alloy powder varies with the condi­
tions of nitrogenation. Conditions of nitrogenation 
and nitrogen content x of the Sm

2
Fe

17
Nx powder are 

given in Table 1. It can be seen from the table that the 
nitrogen content x is changeable up to x = 6. The 
Smle

17
Nx powder in which x > 3.0, however, do not 

consist of a single phase of the Th
2
Zn

17 
structure [3]. 

According to the neutron diffraction study of 
Ndle

17
Nx, the nitrogen atoms are located only in 9e 

sites which admit 3 atoms per formula unit [5]. This 
fact suggests that, in the Sm

2
Fe

17
Nx powder in which 

x > 3.0, the Smle
17

N
3 

phase coexists with an amor­
phous phase having higher nitrogen content. This 
coexistence causes the deterioration of the saturation 
magnetization. Annealing the Sm2Fe

17
Nx powder in 

which x > 3.0 in an argon atmosphere, removes ap­
preciable amounts of nitrogen, so that the nitrogen 
content x approaches 3.0. This annealing is very ef­
fectual in obtaining a Smle

17
N

3 
powder which 

shows most excellent hard magnetic properties. 
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Sm Fe 

Sm2Fe17Nx powder 

2.2. Method of magnet fabrication 
Although coarse powder shows low coercivity, 

fine powder with a 2 - 3 l-Ull size has high coercivity 
[ 4]. Therefore, bonded-magnets can be fabricated by 
mixing the fine powder with a polymer or metal 
binder, and then aligning and compacting the com­
pounds. Figure 2 shows the flow charts of the fabri­
cation of compression-molded and injection-molded 
magnets and zinc-bonded magnets. 

3. CHARACTERISTICS OF Sm
2
Fe

17
N3 

BONDED-MAGNETS 

3.1. Magnetic properties of Sm
2
Fe

17
N3 bonded 

magnets 

Figure 1. Typical preparation step for Sm2Fe17Nx. 

Typical examples of the demagnetization curves 
and magnetic properties of the bonded-magnets are 
shown in Figure 3 and Table 2, respectively. It is no­
table that both compression- and injection-molded 
magnets have higher (BH) max values than commercial 
magnets, the (BH)max values of the commercial Sm­
Co compression-molded magnets being 15 - 17 
MGOe, Sm-Co injection-molded magnets 10 MGOe 
and Nd-Fe-B compression-molded magnets 10 
MGOe. The injection-molded magnet has relatively 
low coercivity, since the deterioration of the coerciv-

Table 1 
Condition of nitrogenation and nitrogen content x in Sm2Fe17Nx powder 

Condition of nitrogenation nitrogen content x 
Sample name 

Temperature Partial pressure Time of 
( oc) (atm) nitrogenation 

NH.1 H2 (min) 

a 420 0.35 0.65 1 
b 465 0.35 0.65 1 
c 465 0.35 0.65 15 
d 465 0.35 0.65 120* 
e 465 0.35 0.65 120 
f 465 0.35 0.65 960 
g 495 0.35 0.65 120 
h 465 0.45 0.55 150 

* Sample d was heated in argon atmosphere for 1 hour at 465 aC after nitrogenation 
to reduce nitrogen content. 

in Sm2Fe17Nx 

0.9 
1.9 
2.8 
3.0 
3.3 
4.1 
4.8 
5.9 
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200-300 oc 400-450 oc 
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Injection-molded 
bonded-magnet 

Zinc-bonded 
magnet 

Figure 2. Flow charts of the fabrication of compression-molded and injection-molded magnets and 
zinc-bonded magnets. 
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ity occurs during the injection process due to high 
temperature. In contrast, the zinc-bonded magnet has 
high coercivity resulting from a heat treatment 
around the melting point of zinc. It is supposed that 
this enhancement of coercivity is owing to the emer­
gence of Znle

3 
[6] or Smz(Fe0.7Zn0) 17N3 phase [7]. 
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Figure 3. Demagnetization curves of various 
Smle

17
N

3 
bonded- magnets. (A: epoxy-bonded com­

pression, B: nylon"bonded injection, C: zinc-bonded) 

3.2. Thermal properties and oxidation resis­
tance 

Thermal properties of Sm2Fe
17

N3 bonded-magnets 
are shown in Table 3. Although temperature coeffi­
cients of remanence (a) of Smle17N3 bonded-mag­
nets are fairly good, temperature coefficients of coer­
civity ({3) of epoxy and nylon bonded-magnets are 
inferior to the other rare-earth magnets. The addition 
of cobalt raises the Curie temperature ( 554 oc ), but 
has no effect on the temperature coefficients a and f3· 
Figure 4 shows the irreversible flux loss of injection­
molded magnets (LID= 0.7 ). It can be seen that the 
addition of cobalt is effective for the improvement of 
the irreversible flux loss. 
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Table 2 
Magnetic properties of Sm2Fe17N3 bonded-magnets 

Magnet 
Density Remanence, Br Coercivity, iHc (BH)max 

(g!cm3) (kG) (kOe) (MGOe) 

Compression-molded 5.8 -6.0 9.5-10.0 7-9 18-20 
(Epoxy-bonded) 

Injection-molded 
4.5 -5.0 7.5 - 8.0 5-7 12-13 

(Nylon-bonded ) 

Zinc-bonded 7.2-7.5 7.0 - 9.5 7-15 10-17 

Table 3 
Thermal properties of Sm2Fel7N3 bonded-magnets 

Temperature coefficient ( %/degree) 
Magnet Curie temperature 

( oc) 
Remanence, a Coercivity, 0 

Compression-molded 
473 - 0.06 -- 0.085 -0.45 

(Epoxy-bonded ) 

Injection-molded 
473 - 0.06 -- 0.085 -0.45 

(Nylon-bonded ) 

Zinc-bonded 473 - 0.06 -- 0.085 -0.35 

Sm2( Fe0.9CoO.l )17N3 
Injection-molded 554 - 0.06 -- 0.10 -0.45 

(Nylon-bonded ) 
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Figure 4. Irreversible flux loss of injection-molded 
magnets. 

Since SmzFe1~3 bonded-magnets comprise fine 
powder, we must be concerned with preventing from 
an oxidation of the powder. A polymer-bonding 
method is favorable for attaining an excellent oxida­
tion-resistance. A nylon-bonded magnet has a fairly 
good oxidation resistance by the coating the fine pow­
der with the ny Ion. Some spots of rust, however, can 
be observed after the humidity test ( 80 oc, 90 %RH, 
500 hrs ). It has been found that the oxidation resis­
tance can be improved with the addition of cobalt; no 
spots of rust can be observed after the same humidity 
test of the SmiFe0.9Co0.1) 17N3 

nylon-bonded magnet. 
The addition of cobalt has a good effect on not only 
the irreversible flux loss but also the oxidation resis­
tance. 
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5. SUMMARY 

The Sm-Fe-N compounds are highly favorab1e to 
its utilization as the materials for permanent magnet 
applications, especially for bonded magnets. The 
(BH)max values of SmzFe17N3 compression-molded 
and injection-molded magnets are 20 and 13 MGOe, 
respectively. Although some problems such as the 
relatively large irreversible flux loss remain for prac­
tical use, it seems that these problems will be cleared 
up by further studies for improvement. 
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