Organic chemical derivatization of fullerene

T. Akasaka, ${ }^{\text {a }}$ W. Ando, ${ }^{\text {a }}$ K. Kobayashi, ${ }^{\text {b }}$ and S. Nagase ${ }^{\text {b }}$

${ }^{\text {a Department }}$ of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
b Department of Chemistry, Faculty of Education, Yokohama National University Yokohama 240, Japan

In this paper the recent topics we obtained are discussed; i) reaction of silylene with Buckminsterfullerene (C_{60}) and ii) photochemical $[2+3]$ cycloaddition of C_{60} with disilirane.

1. INTRODUCTION

Since the isolation of Buckminsterfullerene $\left(\mathrm{C}_{60}\right)^{1}$ in preparatively useful quantities, ${ }^{2}$ much attention has been devoted to its chemical reactivities. ${ }^{3-5}$ In spite of their potential usefulness as organomaterials, only a few discrete individual products such as the fulleroids and methanofullerene derivatives ${ }^{4}$ and the fullerene epoxide, ${ }^{5}$ have been prepared and completely characterized in several functionalizations attempted. Meanwhile, organosilicon compounds represent a unique feature of materials such as polysilanes, which may approaching commercialisation. We believe that combination of fullerene and organosilicon compounds might form a new class of organic compounds and at the same time open a new field of material science. In this paper we would like to briefly summarize our results
obtained on organic chemical derivatization of C60 with activated organosilicon compounds; i) addition of bis(2,6-diisopropyl-phenyl)silylene as a reactive divalent species to C_{60} furnishes the isolable adduct ${ }^{6}$ and ii) photochemical $[2+3]$ cycloaddition of C_{60} with 1,1,2,2-tetramesityl-1,2-disilirane affords the cycloadduct as a doubly silylated product onto $\mathrm{C}_{60}{ }^{7}$

2. THE FIRST FULLERENE SILIRANE

When trisilane $\underline{1}(0.1 \mathrm{mmol})$ as a silylene precursor was photolyzed with a low-pressure mercury lamp in a toluene solution of $\mathrm{C}_{60}{ }^{(0.1}$ mmol), the color of the solution changed from purple to dark brown. Flash chromatography on silica gel furnished thermally stable $\underline{2}$ and

Scheme I

$\underline{3}$ (Scheme I). A small amount of $\underline{4}$ and $\underline{5}$ were also obtained. A product composition of a silylene-addition reaction varies with an amount of the trisilane used.

The following spectroscopic analyses were carried out. FAB mass spectrometry of 2 displays a peak for adduct 2 at 1074-1070 as well as for C_{60} at 723-720 which arises from loss of the silylene. The FAB mass spectra of $\underline{3}, \underline{4}$ and $\underline{5}$ adducts of C_{60} were reasonably analyzed. The UV-vis absorption spectra of 2 is virtually identical to that of C_{60} except for subtle differences in the $400-700 \mathrm{~nm}$ region. Several bands are observed with four bands which correspond to those in the C_{60} spectrum.

The FAB mass, UV-vis and FTIR spectra of $\underline{2}$ contain a number of unique features, but also suggest that this new fullerene retains the essential electronic and structural character of C_{60}. The silirane structure 2 a , of $\mathrm{C}_{2} \mathrm{~V}$ symmetry, $3 \mathrm{a}, 3 \mathrm{e}-\mathrm{g}, 4 \mathrm{a}$ would derive from addition of 1 across the reactive 6 -ring-6-ring

2a

$6 a$

2b
junction. Silamethano[10]annulene $\underline{2 b}$ could arise via isomerization of 2a.

The proton NMR was consistent with the $\mathrm{Dip}_{2} \mathrm{Si}$ adduct of C_{60}. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\underline{2}$ shows 17 signals for the C_{60} skeleton, of which four correspond to two carbon atoms and thirteen correspond to four carbon atoms; one at $\delta=71.12 \mathrm{ppm}$ and the remainder between $\delta=140$ and $\delta=150$. This is the appropriate number and ratio of peak intensities for a C_{60} adduct of $\mathrm{C}_{2} \mathrm{~V}$ symmetry . The ${ }^{13} \mathrm{C}$ NMR signal at $\delta=71.12$ strongly supports $2 \underline{a}$ rather than 2 b ; an $\mathrm{sp}^{2} \mathrm{C}-\mathrm{Si}$ should give rise to a signal below $\delta=130 .{ }^{8}$ The ${ }^{29} \mathrm{Si}$ NMR spectrum of $\underline{2}$ shows a peak at $\delta=-72.74$ which is also assigned to the silicon atom of 2a. The chemical shift of the silicon atom on a silirane ring typically appears at high field ranging from $\delta=-50$ to $\delta=-85 .{ }^{8}$ The ${ }^{29} \mathrm{Si}$ chemical shift of diphenyldivinylsilane can be anticipated to appear at $\delta=-20 .{ }^{8}$ Thus, the chemical shifts of the two-carbon signal at $\delta=71.12$ and the silicon one at $\delta=-72.74$ are fully consistent with expectations for the silirane carbon atoms and silicon atom in $\underline{2 a}$.

The experimental finding for 2 a was confirmed by AM1 molecular orbital calculation ${ }^{9,10}$ on the reaction of C_{60} and silylenes, $\mathrm{Ph}_{2} \mathrm{Si}$: and $\mathrm{H}_{2} \mathrm{Si}$. $\mathrm{Ph}_{2} \mathrm{Si}$: and $\mathrm{H}_{2} \mathrm{Si}$: add across the junction of two sixmembered rings in C_{60} to give siliranes (a 6-6 adduct), $\underline{6 a}$ and $\underline{6} \mathbf{a}$, with an exothermicity of

$7 a$

7b
61.3 and $78.0 \mathrm{kcal} / \mathrm{mol}$, respectively. The isomeric $\underline{6 b}$ and $6 b^{\prime}$ were not located on the potential energy surface. The optimized structure of 6a is shown in Figure 1. The 6-6 adduct 6a was 19.4 and $10.7 \mathrm{kcal} / \mathrm{mol}$ more stable than the 5-6 adducts $7 \mathrm{a}^{\prime}$ and $7 \mathrm{~b}^{\prime}$, respectively. 6a' was 19.0 and $6.2 \mathrm{kcal} / \mathrm{mol}$ more stable than the 5-6 adducts $\underline{7 \mathrm{a}}$ and $\underline{7 \mathrm{~b}}$, respectively. The less stable $\underline{7 \mathrm{a}}$ and $7 \underline{\mathrm{a}}$ ' isomerize to $\underline{7 b}$ and $\underline{7 b}$ 'with a small barriers of
2.0 and $1.0 \mathrm{kcal} / \mathrm{mol}$, respectively. Interestingly this is in contrast with the addition of diphenylmethylene for which the 6-6 adduct was calculated to be only 1.2 $\mathrm{kcal} / \mathrm{mol}$ more stable than the 5-6 adduct.

Based on these observations, it might be realized that addition of silylene 1 onto C_{60} actually forms the silirane $2 \mathbf{a}$, similar to the case of a carbene-addition. 3 c

Fig. 1 The optimized structure of $\mathbf{6 a}$.

$\begin{array}{ll} & \mathrm{Si} \\ \mathrm{O} & \mathrm{C} \\ 0 & \mathrm{H}\end{array}$

3. PHOTOCHEMICAL [2+3] CYCLOADDITION OFC60 WITH DISILIRANE

C_{60} is a strong electron acceptor capable of taking on as many as six electrons, and photoexcited C_{60} is a stronger electron acceptor than C_{60} in the ground state. $5,11,12$ Although photo-induced charge-transfer between C_{60} and various electron donors such as aromatic amines, 5,13 semiconductor colloid, 12 porphyrins, ${ }^{14}$ and photoconducting polymers ${ }^{15}$ can occur, there has so far been no example of
formation of a photoadduct. Meanwhile, strained $\mathrm{Si}-\mathrm{Si} \sigma$ bonds can act as an electron donor. 16,17 We report here that the first photochemical reaction of C_{60} with a disilirane produces a [$2+3$] cycloadduct.

Irradiation of a toluene solution of 1,1,2,2-tetramesityl-1,2-disilirane (8 a, 0.1 mmol) and C_{60} (0.1 mmol) with a high-pressure mercuryarc lamp resulted in formation of 9 a and 10 a with complete consumption of C_{60}. (Scheme II) The adducts can be readily isolated by preparative HPLC.

Scheme II

FAB mass spectrometry of 9a displays a peak for 9a at 1270-1266 as well as one of C_{60} at 723-720 which arises from loss of 8a.

The UV-vis absorption spectra of 9 a is virtually identical to that of C_{60} except for subtle differences in the $400-500 \mathrm{~nm}$ region. Interestingly, the spectrum of 9 a has absorption features comparable with those of the carbon ${ }^{3 f}$ and oxygen ${ }^{4 b}$ analogues of $9 a$, and the related carbene, 3 a-d silylene ${ }^{6}$ and oxygen ${ }^{4}$ adduct, as one would expect from the similarity of the chromophore in these compounds.

The ${ }^{1} H$ NMR spectrum of $\underline{9 a}$ displays six methyl signals and four meta-proton signals on the mesityl groups. An AB quartet ($\mathrm{J}=13.0 \mathrm{~Hz}$) for the two methylene protons supporting Cs symmetry of the molecule is also observed. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\underline{9 a}$ shows 32 signals for the C_{60} skeleton. Of the 32,28 signals have a relative intensity of 2 and 4 signals have a relative intensity of 1 : one at 73.36 ppm and the remainder between 130 and 150 ppm . Twelve signals for 4 tertiary and 8 quaternary aromatic carbon atoms, and 1 signal for methylene carbon atom of the disilirane component are also observed. These spectral data suggest Cs symmetry of 9 a . The ${ }^{29} \mathrm{Si}$ NMR spectrum of $\underline{9 a}$ shows a peak at -9.81 ppm which is assigned to the silicon atom of $\underline{9 a} .8$

Symmetry arguments support the following possibilities: (i) a 5,6 -ring junction on the fullerene without free rotation of
mesityl groups at $30^{\circ} \mathrm{C}$ and with a "frozen" (no ring inversion) single conformer in the envelope conformation; (ii) a 5,6 -ring junction on the fullerene without free rotation of mesityl groups at $30^{\circ} \mathrm{C}$; and (iii) a 6,6 -ring junction on the C_{60} without free rotation of mesityl groups at $30^{\circ} \mathrm{C}$ and with a "frozen' conformer (no ring inversion).

In order to obtain further information on the structure of 9 a , the variable-temperature ${ }^{1} \mathrm{H}$ NMR measurement was carried out. Coalescence of two para-methyl signals at 44 ${ }^{\circ} \mathrm{C}$ reflecting conformational change of the molecule was observed, yielding an activation energy $\Delta G^{\neq}=17.0 \mathrm{kcal} / \mathrm{mol}$. The two pairs of four resonances of the meta-proton and orthomethyl groups also coalesce at 60 and $80^{\circ} \mathrm{C}$, respectively and their $\Delta \mathrm{G}^{\neq}$at coalescence temperatures is $16.2 \mathrm{kcal} / \mathrm{mol}$. These results reveal equivalency of methylene, methyl and aromatic protons over the coalescence temperature and supports hypothesis (iii) above.

Hypothesis (iii) was also supported by AM1 ${ }^{9}$ and ab initio $3-21 G^{18}$ molecular orbital calculations on the reaction of C_{60} and disilirane 1 b which show that the 6,6 -adduct is 16.9 (AM1) and 26.5 ($3-21 \mathrm{G} / / \mathrm{AM} 1$) $\mathrm{kcal} / \mathrm{mol}$ more stable than the 5,6 -adduct. The experimental finding for the C_{S} structure of 9a (6,6 -adduct) was confirmed by the full geometry optimization at the AM1 level; its C_{s} structure corresponds to an energy minimum
and is the most stable. As the optimized structure in Figure 2 shows, four bulky mesityl groups are beautifully spaced in C_{S} symmetry with the observed equivalency. The high barrier observed is ascribed to the fact that the space between C_{60} and mesityl groups as well as between mesityl groups becomes filled upon transformation from one envelopeconformer to the other. Such a steric effect was also reflected in the fact that the exothermicity ($34.1 \mathrm{kcal} / \mathrm{mol}$) for the addition
of $\underline{1 \mathrm{a}}$ to C_{60} is $43.2 \mathrm{kcal} / \mathrm{mol}$ smaller than that ($77.3 \mathrm{kcal} / \mathrm{mol}$) of $\underline{\mathrm{bb}}$ at the AM1 level.

Studies on the reaction mechanism are in progress.

Acknowledgment: This work was partly supported by the Ministry of Education, Science, and Culture, Japan for a Grant-in-Aid for Scientific Research on Priority Area (No. 05233204).

Fig. 2 The optimized structure of 9 a .

REFERENCES AND NOTES

1 Kroto, H. W.; Heath, J. R.; O'Brien, S. C.;
Curl, R. F. and Smalley, R. E., Nature, 1985, 318, 162.
2 (a) Krätschmer, W.; Lamb, L. D.;
Fostiropoulos, K. and Huffman, D. R.,
Nature, 1990, 347, 354. (b) Krätschmer, W.;

Fostiropoulos, K. and Huffman, D. R., Chem. Phys. Lett., 1990, 170, 167.
3 (a) Wudl, F. Acc. Chem. Res., 1992, 25, 157.
(b) Hoke II, S. H.; Molstad, J.; Dilettato,
D.; Jay, M. J.; Carlson, D.; Kahr, B.; Cooks, R. G. J. Org. Chem., 1992, 57, 5069. (c) Vasella, A.; Uhlmann, P.; Waldraff, C. A. A.; Diederich, F.; Thilgen, C. Angew.

Chem. Int. Ed. Engl., 1992, 31, 1388. (d)
Rubin, Y.; Khan, S.; Freedberg, D. I.;
Yeretzian, C. J. Am. Chem. Soc., 1993, 115, 344. (e) Prato, M.; Li, Q. C.; Wudl, F. Ibid., 1993, 115, 1148. (f) Prato, M.; Suzuki, T.; Foroudian, H.; Li, Q.; Khemani, K.; Wudl, F.; Leonetti, J.; Little, R. D.; White, T.; Rickborn, B.; Yamago, S.; Nakamura, E. Ibid., 1993, 115, 1594.
4 (a) Creegan, K. M.; Robbins, J. L.; Robbins, W. K.; Millar, J. M.; Sherwood, R. D.;

Tindall, P. J.; Cox, D. M.; Smith, A. B., III: McCauley, J. P., Jr.; Jones, D. R.; Gallaghar, R. T. Ibid., 1992, 114, 1103. (b) Elemes, Y.; Silverman, S. K.; Sheu, C.; Kao, M.; Foote, C. S.; Alvarez, M. M.; Whetten, R. L. Angew. Chem., Int. Ed. Engl., 1992, 31, 351.
5 (a) Arbogast, J. W.; Foote, C. S.; Kao, M. J. Am. Chem. Soc., 1992, 114, 2277. (b) Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.; Rubin, Y.; Diederich, F. N.; Alvarez, M. M.; Anz, S. J.; Whetten, R. L. J. Phys. Chem., 1991, 95, 11.
6 Akasaka, T.; Ando, W.; Kobayashi, K. and Nagase, S. J. Am. Chem. Soc., 1993, 115, 1605.

7 Akasaka, T.; Ando, W.; Kobayashi, K.; Nagase, S., submitted.
8 Williams, E. A., "The Chemistry of Organic Silicon Compounds; " Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; pp. 511-554.
9 Dewar, M. J. and Jie, C. X., Organometallics, 1987, 6, 1486.
10 All calculations were carried out using the GAUSSIAN 92 program; Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. .; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.;

Baker, J.; Stewart, J. J. P. and Pople, J., A. GAUSSIAN 92, Gaussian, Inc., Pittsburgh, USA, 1992.
11 Sension, R. J.; Szarka, A. Z.; Smith, G. R.; Hochstrasser, R. M. Chem. Phys. Lett. 1991, 185, 179.
12 Kamat, P. V. J. Am. Chem. Soc. 1991, 113, 9705.

13 Wang, Y. J. Phy. Chem. 1992, 96, 1530.
14 (a) Hwang, K. C.; Mauzerall, D. J. Am. Chem. Soc. 1992, 114, 9705. (b) Hwang, K. C.; Mauzerall, D. Nature, 1993, 361, 138.

15 Wang, Y.; West, R.; Yuan, C. -H. J. Am. Chem. Soc. 1993, 115, 3844; references cited therein.
16 (a) Ando, W.; Kako, M.; Akasaka, T.; Nagase, S. Organometallics, 1993, 12, 1514, references cited therein. (b) Ando, W.; Kako, M.; Akasaka, T. J. Am. Chem. Soc. 1991, 113, 6286.
17 (a) Traven, Y. F.; West, R. J. Am. Chem. Soc. 1973, 95, 6824. (b) Sakurai, H.; Kira, M.; Uchida, T. Ibid. 1973, 95, 6826.

18 Gordon, M. S.; Bunkley, J. S.; Pople, J. A.; Pietro,W. J.; Hehre, W. J. J. Am. Chem. Soc. 1982, 104, 2797.

