PREDICTION OF STABLE STRUCTURES OF FULLERENES BY ENERGY CALCULATIONS

Kazutoshi Tanabe, Seiji Tsuzuki and Eiji Osawa*

National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305, Japan,

*Toyohashi University of Technology, Toyohashi, Aichi 441, Japan

Heats of formation for various plausible structures of four higher fullerenes (C₇₆, C₇₈, C₈₂ and C₈₄) were calculated with semi-empirical molecular orbital method AM1. The symmetries of the calculated most stable isomers agree with the results obtained from experimental measurements. The calculations of C₇₆ and C₈₄ show that the most stable isomers satisfy the IPR rule, and the calculations of C₈₄ isomers show that seven-membered rings destabilize the fullerene structures.

1. INTRODUCTION

Carbon clusters (fullerenes) have been the focus of many experimental and theoretical studies since Kroto et al. reported the existence of C_{60} clusters in laser vaporized products of araphite in 1985. Recently Kratschmer et al. reported that carbon clusters are produced in large quantity in the evaporation of graphite. The major species are C_{60} and C_{70} clusters, and small amounts of higher fullerenes (C76, C78, and larger) are also produced. The structures of C₆₀ and C₇₀ fullerenes were extensively experimental studied by and theoretical methods. On the other hand, information on higher fullerenes is still quite limited. The crude but effective Huckel method was applied

to estimate resonance energies of a few plausible structures of C_{84} . Unfortunately this method, however. cannot evaluate strain (stretching and bending strain energy). Recently Bakowies and Thiel reported MNDO calculation of 30 carbon clusters (C20-Raghaxachari and Rohlfing C540). reported MNDO and HF/3-21G level ab initio MO calculations of C₆₀, C₇₀ Negri et al. reported the and C_{84} . relative stability and vibrational frequencies of D_{6h} and T_d C_{84} calculated with QCFF/PI method. However they considered only two or three isomers of C_{84} in their work. Here we report the calculations of heats of formation for various plausible structures of higher fullerenes with semi-empirical molecular orbital method AM1.

2. COMPUTATIONAL TECHNIQUE

Heats of formation with AM1 were calculated using MOPAC program version 6.01. Geometries of isomers were fully optimized using the geometry optimization routine in the program.

A large number of geometrical isomers of higher fullerenes can be considered. However, it is not possible to calculate the energies of all isomers. C₆₀ has only five- and sixmembered rings, and all the fivemembered rings in C₆₀ are isolated. This is an empirically known rule as "isolated pentagon rule (IPR)". Higher fullerenes, which have only five- and six- membered rings and whose fivemembered rings are isolated, were considered here. In addition some other isomers which do not satisfy IPR were also considered.

3. RESULTS AND DISCUSSION

3.1 C₇₆

NMR measurement shows that C₇₆ has D_2 symmetry. The energies of six isomers including two IPR isomers were calculated here. The optimized structures of those isomers are shown in Fig. 1. The calculated heats of formation are given in Table 1. The most stable isomer F satisfies IPR, and its symmetry is D_2 , which agrees with the experimental observation by NMR.

3.2 C₇₈

Chromatography separation data show that C_{78} is the mixture of three isomers. Two of them have C_{2v} symmetry and another has D_3 symmetry. The dominant isomer has C_{2v} symmetry. The energies of five IPR isomers were calculated here. The optimized structures of those isomers are shown in Fig. 1. The calculated heats of formation are given in Table 1. The most stable isomer E has C_{2v} symmetry, and the three lowest energy isomers have C_{2v} , C_{2v} and D_3 symmetry, which agree with the experimental observation by NMR.

3.3 C₈₂

Experimental measurements show that C_{82} is the mixture of three isomers, and the dominant isomer has C_2 symmetry. The energies of seven IPR isomers were calculated here. The optimized structures of those isomers are shown in Fig. 1. The calculated heats of formation are given in Table 1. The most stable isomer C has C_2 symmetry, which agrees with the experimental measurement.

3.4 C₈₄

Experimental measurement shows that C₈₄ is the mixture of two isomers, which have D_2 and D_{2d} symmetries. The energies of eight IPR isomers and six non-IPR isomers were calculated here. Two of the non-IPR isomers have a few seven-membered rings. The optimized structures of those isomers are shown in Fig. 1. The calculated heats of formation are given The most stable two in Table 1. isomers G and K have D_{2d} and D₂ symmetries, which agree with the experimental measurement.

4. CONCLUSION

The energies of various plausible isomers of higher fullerenes were

Fig. 1 Optimized structures of various isomers of higher fullerenes

Fullerene	Isomer	Symmetry	Heat of formation (kca/mol)	IPR/7MR*
C ₇₆	A	Td	1147	IPR
	В	T	1483	
	С	D_2	1409	
	D	D2	1227	
	E	D2	1323	
	F	D2	1122	IPR
C78	A	D3h	1165	IPR
	В	D3h	1148	IPR
	С	D3	1140	IPR
	D	C2v	1138	IPR
	<u> </u>	C2v	1133	IPR
C ₈₂	A	C3v	1204	IPR
	B	C3v	1189	IPR
	С	C2	1161	IPR
	D	C ₂	1165	IPR
	E	C ₂	1173	IPR
	F	Cs	1167	IPR
	G	Cs	1168	IPR
C ₈₄	A	Td	1196	IPR
	В	D7	1541	7MR
	С	D _{6h}	1173	IPR
	D	D _{6h}	1664	
	E	D _{3h}	1309	
	F	D _{3h}	1505	7MR
	G	D _{2d}	1165	IPR
	H	D _{2d}	1186	IPR
	I	D _{2h}	1243	
	J	D _{2h}	1449	
	K	D_2	1166	IPR
	L	D_2	1191	IPR
	M	D_2	1184	IPR
	<u>N</u>	D2	1217	IPR

Table 1 Heats of formation of higher fullerenes calculated with AM1

* IPR : satisfies the isolated pentagon rule. 7MR : contains seven-membered rings.

calculated with semi-empirical molecular orbital method AM1. The symmetries of the calculated most stable isomers agree with those determined from experimental measurements. The calculations of

 C_{76} and C_{84} show that the most stable isomers satisfy the IPR rule. The calculation of C_{84} also show that seven-membered rings destabilize the fullerene structure.