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Using formalized projection of fullerene structure on 2D-triangular lattice, we have developed a program pack­
age which outputs topological Cartesian coordinates of the fullerene, useful for the input of further theoretical 
calculations. The package is capable of producing an infinite number of structures of homologous fullerene. 

1. INTRODUCTION 

Fullerenes are closed polyhedra consisting of 
sp2-hybridized carbon atoms. They have com­
plicated network of 5-membered and 6-membered 
rings of a large number of carbon atoms. We can 
hardly draw structures or generate coordinates 
by hand, hence computer drawing is the natural 
choice. However, available 2D- or 3D-modelling 
software packages are not flexible enough to treat 
the ever expanding new members of fullerene fam­
ily. 

We have already reported that the structure 
of any fullerene can be described as a projection 
onto 2-dimensionallattice[1] and that the projec­
tion drawn by certain fixed procedure can be con­
veniently used for generating infinite number of 
homologous fullerene structures. 

In this paper, we mention a package of pro­
grams which incorporate the projection algo­
rithm and include automatic generation routine 
of atomic Cartesian coordinates. These programs 
have been placed for public use[2]. 

2. PROJECTION OF THE FULLER­
ENES 

Fullerenes of !-symmetry such as buckminster­
fullerene ( C6o) are geometrically equivalent to 
Goldberg polyhedra[3, 4]. Because the Goldberg 
polyhedra derive from icosahedron, a projection 
of icosahedron (bold line, Figure 1) can be used 
for projecting !-symmetric fullerenes. Actually, a 
paper model of h-C6o can be readily constructed 
by cutting out and folding the projection of Fig-

Figure 1. Projection and 3D model of h-C6o· 

ure 1, and placing carbon atoms at each center of 
small triangles. Twelve corners in the projection 
become the centers of twelve pentagons. For this 
reason, the corners are called 'pentagonal defects' 
[5]. Cross points on the triangular lattice become 
the center of hexagonal carbon ring in fullerenes. 

As mentioned before[1], it is advantageous, for 
subsequent generation of fullerene structures with 
low symmetry and their atomic coordinates, to re­
gard a projection as composed of a central 'band' 
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Figure 2. Projection of C1-Cs4. 

containing ten triangles and a pair of 'cap' struc­
tures, each cap containing six corners. In general, 
there is no need for all of the triangles in a projec­
tion to be regular triangles, if the projection can 
be folded into a solid. Figure 2 gives an exam­
ple of projection consisting mostly of non-regular 
triangles, which gives upon cutting and folding a 
Cs4 fullerene having no any symmetry element. 
Note that the band area is no longer a parallelo­
gram. 

3. GENERATION OF ISOMERS 

One particular projection corresponds to a 
fullerene structure. We utilize this one-to-one 
correspondence to produce isomeric and homol­
ogous structures of fullerenes by first generating 
as many projections as possible and then deriving 
different fullerene structures from them. For this 
purpose, we wrote the following three programs 
for 

(1) Generating various cap structures, 
(2) Combining a pair of cap structures above 

and below a band structure such that the result­
ing projection can be folded into a solid consist­
ing of twelve pentagons and various number of 
hexagons, 

(3) Finally producing atomic Cartesian coor­
dinates of the corresponding fullerene from the 
projection (Figure 3). 

3.1. Caps 
A cap is a row of five triangles connected at 

the corner like those shown in Figures 1, 2 and 

( Generate unique cap structures ) 

~ 
Combine two caps and prepare the projection 

Derive atomic Cartesian coordinates from the projection 

Figure 3. Flow chart of isomer-generating. 

Figure 4. An example of cap structure. 

4. As mentioned above, there is no restriction on 
the shape and size of triangle. In order that a 
cap folds itself to form a part of solid containing 
six 'pentagonal defects', two facing edges of a pair 
of connected triangles must be of the same length 
and the solid angle around a lower corner must be 
300°. In other words, those parts of lattice (Fig­
ure 4, shadowed) which will be cut off and thrown 
away when the projection is to be folded, must be 
regular triangles. Taking advantage of the latter 
fact, we reduce the problem of generating all pos­
sible unique cap structures to that of exhaustively 
finding unique combinations of five regular trian­
gles of any size. Such regular triangles are the 
components of Goldberg polyhedra[3, 4]. 

Figure 5 illustrates the process of generating 
cap structures. First, componential regular tri­
angles of different sizes are prepared and named 
in the order of increasing area (A, B, C · · · Fig­
ure 5(a)). A combination of five regular triangles 
from this file, allowing any repeated sampling, 
and disallowing overlap of edges between the ad­
jacent triangles, produces a cap (Figure 5,(b)). 
When the isolated pentagon rule (IPR) is to be 
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(c) Move the right edge to the left end 
Figure 5. Process of generating a cap structure. 

preserved, the distance of neighbouring corners 
should be longer than 1. The present version of 
program takes care of IPR. 

Figure 5(b) presents a combination of ACBBA 
triangles. The number of combinations increases 
sharply with the number of componential trian­
gles. Our program takes care of creating all pos­
sible combinations, transferring the edge at the 
right end to the far left end to complete the 
cap structure, and removing duplicate structures 
(Figure 5( c)). 

3.2. Projection 
A pair of cap structure can be used for a pro­

jection, if they have the same inclination I and 
width W (Figure 6a). Clearly any cap and its 
180°-rotated copy provide a projectable pair (fig­
ure 6a). Both vertical sides of a band must be par­
allel and of equal height for the projection to fold 
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(a) Cso 

(b) C74- C10o 
Figure 6. Fullerene isomers that can be derived 
from one pair of cap structure. 

into a solid. Hence, if the right-end corner of the 
lower cap (marked with©) is placed as shown in 
Figure 6a, the position of the left-end corner is au­
tomatically decided as shown to give a projection 
for an isomer of Cso fullerene. Figure 6b shows 
fourteen possible positions of the right-end corner 
to produce fullerenes smaller than clOO· Actually 
any eligible pair of cap structure can produce lit­
erally infinite number of projections for fullerenes 
by changing the position of band. 

3.3. Cartesian coordinates 
Using the projection thus obtained, we can gen­

erate atomic Cartesian coordinates according to 
the method of Manolopoulos and Fowler[6]. One 
of our programs that performs this function is 
named FULLER. 

Input for FULLER requires only the contour of 
projection, namely a set of coordinates of 22 cor­
ners (Figure 7a). The contour is then divided into 
twenty triangles(b). Thereupon carbon atoms are 
placed at the center of every small triangle and 
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(a) (b) (c) 

Htickel MO 
calculation 

(d) 
Figure 7. The algorithm of FULLER. 

the connectivity among atoms are deduced based 
on the calculated interatomic distances (c). Con­
nection between the both ends of cap is deter­
mined by the rotation and translation of triangles 
concerned (d). A large part of the source code in 
FULLER pertains to the step d. 

Once the atomic connectivity is known, we 
can readily write down secular determinant for 
Hiickel molecular orbitals of the fullerene. In the 
program FULLER, HMO calculations are per­
formed automatically (e). There are three oc­
cupied HMO's which have only one node and or­
thogonal against each other. Their eigenvalues 
are assigned to X, Y, and Z coordinates, respec­
tively, of each atom, and are then appropriately 
scaled to give a set of topological Cartesian co­
ordinates suitable for an input of molecular me­
chanics or semi-empirical molecular orbital cal­
culations (f). The number of nodes in a HMO's 
can be determined by using the eigenvector and 
connectivity. Namely, all the bond across which 
the sign of atomic coefficient (zero is regarded as 
positive) changes are cut and in the end the num­
ber of molecular fragments are counted to obtain 

(e) (f) 

the number of nodes. Eigenvalues are used for 
judging duplication. 
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