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Introducing a spring model in Cao and C12B2,N2, (CBN), we discuss their relative stability from the dynamical 
point of view. The spring constants are evaluated based on the first principle calculation of binding energy. We 
show that the bonding of CBN is weaker than that of C60 , reflecting the ionic character in CBN in contrast with 
the covalent one in Cao. We also discuss the possibility of synthesizing CBN. 

1. INTRODUCTION 

After the synthesis of C6o, new interesting ma
terials such as hetero-fullerenes and endohedral 
metallofullerens have been exploited. Guo et al. 
doped boron in C6o and obtained mass spectral 
evidence for C6o-xBx, where x ranges between 
1 and 6 [1]. Since BN is stabilized by form
ing graphite-like sheets, also it seems reasonable 
that C6o substituted by BN units, e.g., C5sBN, 
Cs6B2N2, Cs4B3N3 and so on, could be syn
thesized, although their syntheses have not been 
achieved. 

Recently Xia et al. have proposed the cluster 
C12B24N24 (CBN); it contains the largest possi
ble number of boron and nitrogen under the con
straint that there are no B-B or N-N bonds [2]. 
They also calculated the total energy of CBN by 
using the modified neglect of differential overlap 
method and suggested that CBN is more stable 
than C6o thermodynamically. On the other hand, 
Kobayashi and Kurita showed that CBN is less 
stable than 0 60 , employing the first principle cal
culation adopted the self-consistent-field (SCF)
molecular-orbital (MO) method based on the 
non-local-density-functional formalism (3]. Thus 
the relative stability of CBN to C6o is controver
sial at present. 

Furthermore it was shown by Kobayashi and 
Kurita that the charge transfer from boron to ni
trogen is caused significantly in the CBN cluster, 
so that CBN reveals strong an ionic character (3]. 
It is noticed that this property contrasts sharply 
with the perfectly covalent character ofC6o· Thus 

it seems important to investigate how the dynam
ics such as intramolecular vibrations are affected 
by the ionic or the covalent character of the clus
ter. 

The purpose of this paper is to study the sta
bility of CBN by comparing with C6o in refer
ence to the dynamics rather than the energetics. 
We first introduce a spring model in order to de
scribe the dynamical properties of CBN and C6o 
and determine the spring constants by using the 
first principle MO calculations. Then we elab
orate on the difference between the spring con
stants of CBN and those of C6o in connection 
with the ionic character of the former and the co
valent character of the latter. Finally we discuss 
the relative stability of CBN to C6o by comparing 
the spring constants of CBN with those of C6o· 

2. SPRING MODEL 

In our model for the C6o cluster, the springs are 
classified into two groups; four kinds of springs for 
bond-stretching motion and two kinds of springs 
for angle-bending motion. The symbol ksp in 
Fig. 1( a) means the spring constant correspond
ing to the single bond-stretching motion, where 
subscripts s and p denote stretching and pen
tagon, respectively. Similarly the subscript h 
is used for the spring constant with respect to 
hexagon. It is noticed that ksh is the spring 
constant of the bond connecting two pentagons. 
Other two stretching spring constants are ks2p 
and ka2h between the second nearest neighbor 
atoms inside a pentagon and a hexagon, respec-
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Figure 1. Schematic diagram of the spring model 
for the C6o cluster, (a)the springs for bond
stretching motion and (b )the springs for angle
bending motion. 

tively. Furthermore we define kbp and ~h as 
the spring constants representing angle-bending 
motion inside a pentagon and a hexagon, respec
tively (Fig. 1(b)). 

We now explain the spring model for CBN, 
whose point group symmetry is S5. That is, the 
symmetry of CBN is considerably reduced in com
parison with Ih of C6o. The schematic model of 
CBN is shown in Fig. 2, in which 6 C-C, 12 C-N, 
12 C-B and 60 B-N bonds exist. Therefore many 
kinds of spring constants must be considered. 

We determine the spring constants so as to 
reproduce the change in binding energy ac
companied with the given distortions of cluster 
structure, assuming the harmonic approximation. 
Here the binding energy is calculated by using the 
first principle MO method with Harris approx
imation. Furthermore, by considering the linear 
terms in the change in binding energy against the 

Q=Nitrogen @=Boron •=Carbon 

Figure 2. Schematic model of C12B24N24 as 
viewed along the threefold axis. 

displacements, it becomes possible to determine 
the spring constants even if the selected structure 
is not in equilibrium. Thus in determining the 
spring constants, it is sufficient to choose the in
dependent distortions at least by the twice of the 
numbers of the spring constants. Finally, by using 
determined spring constants, we obtain an equi
librium structures from minimizing the sum of the 
elastic energy accumulated in each spring and cal
culate the eigen frequencies of the intramolecular 
vibrations. 

We find that this procedure developed in our 
study is quite easy in deriving the eigen frequen
cies of the cluster in comparison with the con
ventional procedure adopting the first principle 
calculation. In our procedure, we need only the 
spring constants and the equilibrium structure in 
order to calculate the Hess matrix, on the other 
hand, in the conventional procedure, one must 
calculate about 3N X 3N matrix elements of the 
Hessian, where N denotes the total number of the 
constituent atoms. 



3. RESULTS AND DISCUSSION 

The calculated spring constants for C60 are 
given in Table 1, where the bond-stretching and 
the angle-bending spring constants are expressed 
in eV /A 2 and in eV /(rad)2. In order to examine 

Table 1 
Bond-stretching and 
stants in CGo. 

Stretching Value"' 
22.1 
34.6 
3.56 
2.47 

"'in eV/A2. 
bin eV /(rad)2. 

angle-bending spring con-

Bending 
6.93 
4.57 

the accuracy of our spring model, we compare 
the calculated Raman- and IR-active mode fre
quencies in C6o with the experimental results by 
Bethune et al. [5] and find that they agree within 
9% difference on the average. It is noticed that 
the magnitude of ksp and ksh are the same order 
as that of the nearest-neighbor spring constant for 
bond-stretching motion in graphite, whose value 
is about 23 eV /A2 [4]. Furthermore we find that 
k1p is smaller than ksh and that ka2p is larger than 
ka2h· This seems reasonable because it is most 
likely that the spring constant becomes smaller 
as the distance between atoms becomes larger, 
i.e., the distances between two atoms connected 
by the spring kap 1 kah 1 ka2p and ka2h are 1.47, 1.42, 
2.37 and 2.50 A, respectively. In addition to this 
relation, the directional dependence of the inter
atomic forces due to the covalency appears in the 
noticeable difference between the spring constants 
of the nearest neighbor bonds and of the second 
nearest neighbor bondS. 

Next, we show the spring constants of CBN in 
Table 2. As the first step of studies on the dy
namics of CBN, we here assume the same type of 
6 spring constants for CBN as those for C60, ne
glecting the difference among C-C, C-B, C-N and 
B-N bonds. That is, the calculated spring con-

Table 2 
Bond-stretching and angle-bending 
stants in C12B24N24· 

Stretching Value"' Bending 
kap 9.3 
kah 5.7 
ka2p 4.2 
ks2h 3.7 

"'ineV/A2• 
b in eV /(rad)2. 
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spring con-

-0.17 
14.0 

stants are the averages of the spring constants of 
each bond which should. be taken into account 
under the 86 symmetry; for example, kap is the 
average of 12 C-B, 12 C-N and 36 B-N bonds and 
also kah is the average of 6 C-C and 24 B-N bonds. 
Here we restrict ourselves to the analysis of qual
itative properties emerged from the averaged de
scription mentioned above. We find that ksp and 
ksh are much smaller than those for CGo. On the 
other hand, k8 2p and ka2h are almost the same as 
those of eGO· This tendency indicates that the 
directional dependence of the interatomic forces 
in CBN is smaller than that in CGo· This fea
ture reflects the ionic character of CBN due to 
the charge transfer from boron to nitrogen and 
contrasts sharply with the covalent character of 
CGO· 

We now discuss the relative stability of CBN to 
CGo by the difference in the magnitude of the eval
uated spring constants between them. As shown 
above, the nearest neighbor bonds in CBN are re
markably weakened. Moreover, since Kobayashi 
and Kurita showed the variation of bond orders, 
i.e., 0.57 (C-C), 0.45 (C-B), 0.30 (C-N) and 0.37-
0.42 (B-N), respectively [3], we expect that a par
ticular bond like C-B or C-N has a smaller spring 
constant than the averaged one in Table 2. The 
magnitude of the weak spring constant in CBN 
is roughly estimated less than one fifth of that 
of CGo or graphite. Although it is hard to tell 
the temperature at which the network of CGo is 
broken, it is presumed to be about 4000 K from 
the melting temperature of graphite [7]. There
fore, CBN is expected to collapse below 1000 K. 
It is reported that the circumstance of synthesis 
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of fullerene prefers high temperature more than 
1500 K [8, 9]. Consequently, we conclude that 
CBN can't be obtained in the present condition 
of the fullerene synthesis. In order to confirm this 
expectation, we will show the spring constants for 
the nonequivalent bonds in CBN somewhere. 
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