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Amorphization and structural relaxation in Si-implanted Si have been studied using slow positrons and Raman 
spectroscopy. The S parameter in the defect region decreases slightly with the annealing temperature. However, 
no significant change of S parameter was observed with 200°C and 450°C isothermal annealing. One interesting 
point is that S parameter holds lower value in the amorphized region, but such a behavior cannot observed by 
theW parameter. The change of TO peak half width in the Raman spectra (480 cm-1

) was found to correlate 
with the change of S parameter. The defect configuration is expected to alter during isothermal annealing. 

1. INTRODUCTION 

Ion implantation is a increasingly important 
technology for fabrication of doped layers in 
semiconductor micro-electronic devices as devices 
sizes are decreased. The temperature dependence 
of ion-beam-induced amorphization has been gen­
erally considered to be due to competition be­
tween defect accumulation in an energetic colli­
sion cascade and out-diffusion of the defects from 
the cascade,[1] however, the amorphization mech­
anism is still controversial and not yet fully un­
derstood.[2] Furthermore, the completely under­
standing of recovery of defects and the recrys­
tallizations of amorphized Si by subsequent heat 
treatments is urgently required. 

In this presentation, we have investigated the 
defect in amorphized Si prepared by Si self­
implantation, using a slow positron beam and 
Raman spectroscopy. 

2. EXPERIMENTAL 

The substrates used in this study were opti­
cally flat 6"' 8 !"!·cm p-type Si (100) wafers. 30Si 
ions were implanted at energies of 100 ke V and 
150 keY in doses from 1014 to 5 x 1015 ions/cm2 

at room temperature. Isothermal annealing were 
performed in the furnace at 200°C and 450°C un­
der nitrogen gas flow for 150-keV Si implanted 
specimens with a dose of 5 x 1014 cm- 2 . The 
annealing time was set from 30 min to 180 min 
by a increasing step of 30 min for 200° C isother­
mal annealing, and from 10 min to 60 min by 

a step of 10 min for 450°C isothermal anneal­
ing. The thickness of amorphized layers were 
180 nm for 100-ke V Si-implanted specimen and 
200 nm for 150-keV Si-implanted specimens, as 
determined by Rutherford backscattering spec­
trometry (RBS) and by transmission electron mi­
croscopy (TEM), respectively. Structural relax­
ation of a-Si layer was observed by using Raman 
scattering spectroscopy. 488 nm Ar ion laser was 
used as a light source with the diameter of illu­
mination 0.1 mm on the specimen surface and a 
total power of 120 mW.[3] Measurements were re­
peated three times for each specimens with small 
displacements of the laser irradiation point. The 
TO peak in the Raman spectra (480 cm- 1

) was 
observed in the following experiments with a ac­
curacy of ~2 cm- 1 . 

The Doppler broadened spectra of annihilation 
radiations were measured using a slow positron 
beam line constructed at University of Tsukuba. 
The Doppler broadened spectra were character­
ized by the line shapeS and W parameter. 

3. RESULTS AND DISCUSSION 

Figure 1 shows the S parameter as a func­
tion of incident positron energy, i.e., the S(E) re­
sponse, for Si-implanted specimens with energy 
of 100 keY and doses of 1.0 x 1014 

,...... 1.0 x 
1015 cm- 2 • The data are displaced upwards by 
0.01 for clarity. The solid lines indicated the fit­
ting of positron diffusion model to the experimen­
tal data. However, no significant change v<tas ob­
served in S(E) response within the implantation 
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doses though the RBS results indicate the increas­
ing of damage with the implantation dose.[4] 
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Figure 1. S(E) response for Si-implanted speci­
mens with energy of lOO keV and doses of 1.0 x 
1014 

,....., 1.0 x 1015 cm-2 . The solid lines indicate 
the fitting of positron diffusion model to the ex­
perimental data. The data are displaced upwards 
by 0.01 for clarity. 

The data have been modeled using a variation 
of an analysis successfully used in the previous 
investigation of Si.[5-7] The implantation pro­
file P(x, E) of positrons may be described by a 
Makhovian profile[8] 

d X 
P(x, E)= --d [exp (--)m], 

X Xo 
(1) 

xo =:X/f(l + 1/m), (2) 

where m is selected as 1.9 and xis the mean pen­
etration depth of positrons, which is expressed 
as x = (40fp)E1.6. The Doppler response S(E) 
is found by summing the integral of P(x, E) 
and weighting by the characteristic S value for 
different depth of specimen. Thus, the energy­
dependent Doppler response S(E) can be defined 
as 

where Ss, Sa and Sb indicate the characteristic 
values of S parameter for the annihilation at sur­
face, in the damaged region and in the defect-free 
substrate, respectively. 

0.560 
E=l50keV 

0.555 • 0 As-implanted 

+-e'#Orf • 200'C, 60 min annealed ....... 
450'C, 60 min annealed (I) ·~0 m 

.f-.1 0.550 a!BB~ 11111 m• 
(I) m o~ 

E "!!JJI m • 

ro 0.545 -~ 
....... .eA:> ro 

mm+~Y?o 0... 0.540 
m m • • 

V) ll!!ll!lll~ 

0.535 m~$ o 
~0 
m m •• 

0.5300 
10 20 30 

Positron Energy (keV) 

Figure 2. S(E) response for isothermally annealed 
specimens and for as-implanted one. Only two 
data for annealed specimens are included for clar­
ity of the graph. 

The values of damaged depth were estimated 
to be around 500 nm, larger than the thickness 
of amorphized region obtained by RBS measure­
ment. Since the values of Sa/Sb, which are about 
1.043, are larger than those for divacancies, the 
main defect species can be identified as vacancy 
clusters. 

The 150 keV Si-implanted specimen with dose 
of 5 x 1015 cm- 2 were isothermally annealed at 
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Figure 3. S(E) response for isothermally annealed 
specimens and for as-implanted one measured in 
detail. Data are displaced upwards for clarity. 

200°C and 450°C, respectively. The S parameters 
for isothermally annealed specimens are shown in 
Fig. 2. The S(E) for as-implanted specimen is 
also included. The S parameter in the damaged 
region decreased with the annealing time slight.ly, 
implying the recovery of defects in the damaged 
region. However, no further significant variation 
of S parameter was observed when the annealing 
time increased. The interest point is that the S 
parameter holds the lower value around 200 nm 
from the surface. The remeasured S(E) responses 
corresponding to Fig. 2 are shown in Fig. 3 in 
detail. Data are also upwards shifted for clarity 
in Fig. 3. The decreases of S parameter around 
200 nm from surface within statistical deviation 
are also found in other post-annealed specimens. 
However, such a manner of S parameter could 
not be recognized by the W parameter as shown 
in Fig 4. The reason why S and W parameter 
show different manners remains elusive. 

Figure 5 shows a typical example of Raman 
spectra of a-Si (formed by 150 ke V, 5 x 1015 cm- 2 

si+ implantation) after furnace annealing for 360 
min at 450°C. The TO peak half width de­
creased and the peak position shifted towards 
higher wavenumber after thermal treatment. At 
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Figure 4. W parameter for isothermally annealed 
specimens and for as-implanted one measured in 
detail. Data are displaced upwards for clarity. 

the same time the LA peak located at wavenum­
ber 300 cm- 1 became slightly stronger. The de­
crease of the TO peak half width can be at­
tributed to the reduction of the bond angle de­
viation which describes the structural relaxation. 
Beeman et a/.[9] proposed the following linear re­
lationship between the TO peak full width of the 
half maximum r (cm- 1) and bond angle devia­
tion ~0 (degree) in a-Si, 

r;2 = 7.5 + 3~0. (4) 

Figure 6 show the a-Si TO peak half width r /2 
of Si-implanted Si as a function of time of isother­
mal annealing at 200°C and 450°C. The bond 
angle deviation, ~0, generally decreased with an­
nealing but detailed observation of ~0 shows a 
small increase after the initial decrease. The be­
havior is similar to the observation in the relax­
ation process of a-Si:H.[10] Make a comparison 
between the results of Raman spectra and the re­
sults of positron annihilation, one can find that 
the decrease of ~0 corresponds to the decrease 
of S parameter. The defect configuration is ex­
pected to alter during isothermal annealing. It is 
worthwhile to investigate the recovery and recrys­
tallization of amorphized Si in aspect of structural 
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Figure 5. Typical Raman spectra from Si (100) 
specimens implanted with 5 x 1015 cm- 2 Si+ be­
fore and after annealing. 

relaxation. The detailed studies, including cross­
sectional TEM measurement are in progress now. 

4. SUMMARY 

The S parameter in the defect region decreases 
slightly with the annealing temperature. How­
ever, no significant change of S parameter was 
observed with 200°C and 450°C isothermal an­
nealing. One interesting point is that S param­
eter holds lower value in the amorphized region, 
but such a behavior cannot observed by the W 
parameter. The change of TO peak half width 
in the Raman spectra ( 480 cm - 1) was found to 
correlate with the change of S parameter. The 
~efect configuration is expected to alter during 
Isothermal annealing. 
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