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Clusters and Short-Range Order in Glasses 
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The mean field theory with the replica method for the two-dimensional glasses is proposed. We 
introduce the order parameter, which identifies the glass phase, by using the topological number of the 
frozen hedgehog-like soliton based on the gauge-inV'ariant Lagrangian with spontaneous breaking. 

1. Introduction 

There exists an intriguing development in stud­
ies of the structure of liquids and amorphous 
solids. Based on important ideas by Klemans 
and Sadoc [1], it. has been proposed that the 
parameter p(r, u.) in two-dimensional and three­
dimensional glasses is specified by rigid-boday ro­
tation, which are related to gauge fields of S0(:3) 
symmetry for S2 and S0(4) symmetry for S3 , re­
spectively [2-4]. It has been shown by a computer 
simulation [5] that many anomalous fivefold and 
sevenfold coordinated disks, which can be viewed 
as microscopically defined point disclinations are 
formed in the two-dimensional triangular lattice 
at high temperature. It is seen that there exist 
a few dislocation, represented by five fold-seven 
fold disclination dipoles, even at high tempera­
ture. 

Because the five fold coodinated disk (the pen­
tagonal disk) is favora.ble evergetically in com­
parision with other excited detects, the present 
author [6-8] stresses that pentagonal disk is 
one of dominantly exicited solit.ons in the two­
dimensional system at high temperature, and has 
proposed the theoretical picture for these excited 
soli tons, based on the gauge-invariant. Lagrangian 
with spontaneous breaking. 

In the present study, adopting five fold and 
seven fold coordinated disks as frozen detects, 
we will propose the mean field theory with the 
replica method of the two-dimensional glass sys­
tem and introduce the order parameter, which 
identifies the glass phase, by using the topolog­
ical number of the frozen hedgehog-like soliton. 
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2. A model system for frozen hedge­
hog-like defects 

We will investigate two-dimensional glass by 
using frozen excited disk, such as the anomalous 
5- and 7-coordinated disk. It has been shown 
that the curvature can be represented by using a 
component in the other-axis direction, if the two 
spatial dimensional axes are x and y ones. That 
is, it is preferable we think of the anomalous disk 
as the hedgehog-like soliton {defect), taking ac­
count of the curvature. We adopt the parameter 
field p(r, u.) = pa (a=l, 2, 3), which is similar to 
that in the Sachdev and Nelson model [4]. It is 
furthermore assumed that the symmetry of the 
gauge fields All a, which introduce the curvature 
of the hedgehog-like soliton, are extended from 
S0(3) to SU(2). 

Now we introduce the Lagrange density as fol­
lows, 

£=-~(avAil a- allAVa + gl Eabc All b Av c) 2 

1 (8 a A b c)2 + 2 llp - g Eabc ll P 

_ ).,2 (papa_ v2/. (I) 

It is thought that the SU(2) triplet fields, All a, 
are spontaneously broken through the Higgs 
mechanism similar to the way in which the 6-
coordinated symmetry in the triangular lattice 
is broken around the anomalous 5- and 7 -coordi­
nated disks. In other words, in order to introduce 
the cluster with some radius in this system in the 
gauge-invariment formula, we must use the Higgs 



mechanism. If the 5-coordinated disk is formed, 
we set the symmetry breaking of the triplet field, 
(0\pa\0), equal to (0, 0, v). On the other hand, if 
the 7-coordinat.ed disk is formed, we set. symme­
try breaking, (0\pa\0), equal to (0, 0, -v). Then 
we can introduce the effective Lagrange density: 

where lml is vg and jm2! is 2vi2Av. The effective 
Lagrangian, Let f, represents two massive vec­
tor fields, AI-' 1 and AI-' 2 , and one massless vec­
tor field, A f.l 3 . Because these masses are formed 
through the Higgs mechanism by introducing the 
5- and 7-coordinated disks, the gauge fields Af.l1 

and AI-' 2 are only present around the disks. The 
inverse, 1/jmj, of the mass of Al-'1 and A/ re­
flects the radius of the cluster. Since the U(1) 
gauge field A/ is massless, it. is thought. that. the 
gauge field AI-' 3 mediates the long-range interac­
tion between two excited disks (the hedgehog-like 
soli tons). 

3. The model for two-dimensional 

metallic glasses 

Now we can define the topological number q 
for excited hedgehog-like solitons ns follows, 

where "E is a sphere, whose radius is larger than 
1/jmj. If a sphere "E surrounds completely one 
5-coordinat.ed disk, whose center position is Ti, 

the value of qi is + l. If a sphere "E surrounds 
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completely one 7-coordinated disk, whose cen­
ter position is ri, the value of qi is -1. when 
cooled rapidly through the glass transition, many 
hedgehog-like soli tons are frozen randomly in the 
two-dimensional system. In this system we can 
introduce approximately the Hamiltonian as fol­
lows, 

H = L Vi)qiqj. 
(ij) 

(3) 

For the mean-field approximate, it is assumed 
that ViJ describes N hedgehog-like solitons (qi = 
±I) interaction, which mediated by the massless 
AI-' 3 field, in pairs ( ij) via infinite-range Gaussian­
random interactions: 

1 (_v:;.2) 
P(ViJ) = 112 exp ----;.- . 

(2rr(Vi/)) 2(ViJ ) 
(4) 

We ignore the possibility of a mean ViJ for sim­
plity of discussion. Here it should be noted that 
the Hamiltonian in eq. (3) is adequate in the tem­
perature region below the glass transition tem­
perature T9 , because hedgehog-like soli tons must 
be frozen. In this condition, we can evaluate the 
properties of the two-dimensional metallic glasses 
from the anology of the Sherrington-Kirkpatrik 
(SK) formalism [9] by using the replica method 
[10]. 

Thus the free energy for one frozen hedgehog­
like soliton is represented by using the Hubbard­
Strat.orovit.ch transformation as follows, 

f3J =- lim lim N
1 JJ exp (!32V2Nnf4) 

N-+oon-+0 n ll 
f ... fIT lfrrdMQ 

Q 

f · · · f IT lfrrdQQ~ 
(am 

exp (( -N [~~(M")'+~ ~(Q"')' 
+~V~q,"q/Q"" ]))-1 », (5) 

where we set kB = 1, f3 = l/T, and V= ..fN(ViJ) 



which is the Gaussian average of \lij in eq. (4). 
o and (3 are replica indices. Mer and Qa(J are 
integral variables for the H ubbard-Stratorovitch 
transformation. 

Then, we can simplify (3 f in the method of 
steepest descent and replica symmetry condition 
as follows, 

f3J =-~ (!3v)2 (1- G)2- _1_ 
4 ..,f[i 

J e-(l/Z)z
2

log ( z cosh (3V v'Gz) dz, (6) 

where G = ( qia ql ) = Qa(J, ( q{' q/' ) rep­
resents the canonical average with weight of 

exp( -f3VL(cr(J)qiaqlQa(J). Then we canes­

timate G self-consistently from of joG = 0 as 
follows, 

G = -
1
- Joo e-(1/Z)=

2 
tanh2 (f3VVCz) dz. (7) 

$. -00 

In the temperature region below Tc = Vfks, we 
can obtain the phase of G = (qicrql) = Qa(J -::p 
0 and (q{') = 0. It is thought that this phase 
corresponds to the two-dimensional glass. 

So far we don't know the relationship between 
Tc = V/ ks and the glass-formation temperature 
T9 . If it is assumed that Tc is comparable with 
T9 , the present theory for the two-dimensional 
glass is meaningful only in the temperature re­
gion ofT< Tc. 

From eq. (6) and (7), we can introduce the 
temperature linear-like specific heat. in the tem­
perature region of T < T c. More exactly we 
must treat. eq. (5) in the replica symmetry break­
ing condition. We can define the order parame­
ter G = J; dxQ(x), where Q(x) is Parisi order 
parameter and is dirived from Qaf3, in Parisi's 
theoretical formula [11,12]. In the temperature 
region below V j k B, we got. the phase of the or­
der parameter G ¥- 0, which corresponds to the 
glass phase. 

433 

4. Conclusion 

The order parameter G( G) is introduced by us­
ing the topological number of the frozen hedge­
hog-like soli ton in the two dimensional system. In 
the mean field theory with the replica method, 
the phase of the order parameter G( G) ¥- 0, 
which corresponds to the glass phase, is obtained 
in the temperature region below V jk8 . 
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