Transactions of the Materials Research Society of Japan. Vol. 20 C 1996 MRS-J. All rights reserved.

Crystallization and Dielectric Properties of Ba(Zr,Ti)O3 Thin Films by MOD

M.Nishizawa, M. Tsukada, K.Kurihara and N.Kamehara

FUJITSU LABORATORIES LTD.,

10-1, Morinosato-Wakamiya, Atsugi 243-01, JAPAN

Thin films of Ba(Zr,Ti)O₃ were prepared by the metal organic decomposition (MOD) technique in order to produce a high dielectric material. A Ba(Zr_{0.12}Ti_{0.88})O₃ film prepared at 650°C was polycrystalline and the grain size was smaller than BaTiO₃ thin films. The Ba(Zr_{0.12}Ti_{0.88})O₃ thin films with a thickness of approximately 120 nm exhibited a dielectric constant of 380 and loss tangent of 2.6% at the room temperature. Film leakage currents of 1.0×10^{-5} A/cm² were obtained at 400 kV/cm.

1. Introduction

Thin films of perovskite materials such as BaTiO₃, SrTiO₃, (Ba,Sr)TiO₃ and Pb(Zr,Ti)O₃ have been investigated as a high dielectric constant capacitor for dynamic random access memory (DRAM) or nonvolatile memory. Ceramic barium zirconium titanate $[Ba(Zr_x,Ti_{1-x})O_3]$ is a perovskite-type ferroelectric and has very high dielectric constant (10000-35000) at the curie point ¹⁾. But there are few reports about Ba(ZrxTi1-x)O3 thin films. In this study, Ba(Zr0.12Ti0.88)O3 thin film were prepared by metal organic decomposition on Pt/SiO₂/Si substrates and to compare with BZT films, we also prepared BaTiO₃ thin films by same procedure. For evaluation, we investigated the crystal structure and microstructure of the films, and measured dielectric properties.

2. Experimental Procedure

Fig.1 shows the preparation process of the $BaTiO_3$ and $Ba(Zr_{0.12}, Ti_{0.88})O_3$ thin films by MOD method.

The coating solution was prepared by mixing the

BaO, TiO₂ and ZrO₂ containing liquid solutions to be the compositions of BaTiO₃ and Ba(Zr0.12, Ti0.88) O₃, respectively. The solutions was spin coated at 2000 rpm for 20 s on Pt/SiO₂/Si substrates. The coated films were dried at 80° C for 10 min and annealed at 650° C for 10 min in flowing O₂ gas. This process was repeated in order to get suitable thickness of the films.

The crystalline phase of the thin films were identified by X-ray diffraction. Films thickness, grain size and surface morphology were observed by a field-emission scanning eletron microscope (FE-SEM). Pt electrodes of 1.0 mm diameter were sputter-deposited through a mask onto the surface of the films to measure the electrical properties of the films.

The capacitance and the dielectric loss were measured at a frequency of 1kHz with a HP4194A impeadance/gain-phase analyzer, and current-voltage (I-V) characteristics were measured by a HP4140B pA meter / DC voltage source. The dielectric constant was calculated from the capacitance.

3. Result and Discussion

Fig. 2 shows XRD patterns of the BaTiO₃ and Ba (Zro 12Tio.88)O₃ thin films. The XRD pattern indicates that single phase perovskite structure are obtained and each film has no preferred orientation. Fig.3 shows XRD patterns at 2 θ angles from 42-48° of each film. The position of the peak at 45.34° of BaTiO₃ film is very close to the(200) peak at 45.4°

Fig.2 XRD patterns of BaTiO₃ and Ba(Zr_{0.12} Ti_{0.88})O₃ thin films.

Fig.3 XRD patterns of BaTiO₃ and Ba(Zr_{0.12} Ti_{0.88})O₃ thin films measured at 2 θ angle from 42 to 48°.

of tetragonal BaTiO₃ reffered by Hayashi et al.²⁾. The peak shifts to lower angle by substituting BaZrO₃ which means that the lattice constant become larger. The obvious (002) peak of the tetragonal phase was not observed in each film.

In Fig. 4, FE-SEM micrographs of the thin films at (a)BaTiO₃, (b)Ba(Zr_{0.12}Ti_{0.88})O₃ are shown. Thickness of the each films are about 120 nm. The grain size of the films decrease with increasing the

Fig.4 FE-SEM micrographs of the thin films prepared at 650° C of (a) BaTiO₃, (b) Ba(Zr_{0.12}Ti_{0.88})O₃.

substitution of BaZrO₃. Well-defined grain boundaries are observed and the average grain size is 50 nm with subgrain of about 10-20 nm on BaTiO₃ thin film. On the other hand, very fine grain and very smooth surface are obtained on Ba($Zr_{0.12}Ti_{0.88}$)O₃ thin film. This result indicates that substituting BaZrO₃ inhibits grain growth and promotes densification.

Table 1 shows dielectric constant and tan δ of the BaTiO₃ and Ba(Zro.12Tio.88)O₃ thin films. The dielectric constants are similar but the dielectric loss decreased slightly by substituting BaZrO₃. The dielectric constant and tan δ of the the BaTiO₃ and

Ba(Zr0.12Ti0.88)O3 thin films as a function temperature are shown in Fig. 5. The dielec constant and tan δ are relatively constant until 6 at which point a maximum value are observed. maximum point of the BaTiO3 and Ba(Zr0.12Ti0.81 is 74°C and 70°C respectively. The dielectric cos and tan δ then decrease with increasing temperat It seems that the ferroelectric to paraelectric pt transition of these films occures at 63°C. Hayast al. found that BaTiO3 thin films prepared by solprocess has a tetragonal symmetry at rc

Table 1 Dielectric constant and $\tan \delta$ of the BaTiO₃ and Ba(Zro 12Tio.88)O₃ thin films at room temperature.

composition	1	dielectric constant	$\tan \delta$ (%
BaTiO ₃		370	3.4
Ba(Zro.12Tio.88)O3		380	2.6
400			
400		æ	3
	- <u>\$</u>		
380			

temperature, and the film is very similar to that at 100° of the bulk sample by the Raman spetroscopy ²). This indicates that the transition temperature of the film is lower than that of a bulk of BaTiO₃ which shows the currie point at 120° . Futhermore, the transition temperature are not greatly effected by the substitution of BaZrO₃ to the BaTiO₃ film. It seems that the films are affected more by the substrate than by the composition.

The current-voltage(I-V) characteristics of the BaTiO₃ and Ba(Zr0.12Ti0.88)O₃ thin films are shown in Fig.6. Substitution of the 12 mol % of the BaZrO₃ decreased the leakage current from 1.2×10^{-4} A/cm² to 1.0×10^{-5} A/cm² at 400 kV/cm. It seems that this is due to differeces in grain size and surface morphology of the films.

4.Conclusion

Thin films of $Ba(Zr_{0.12}Ti_{0.88})O_3$ were prepared by the MOD technique and compared with $BaTiO_3$ films. The BZT thin film prepared at 650°C are polycrystalline, and the grain size is smaller than

Fig.6 The current-voltage (I-V) characteristics of thin films of (a)BaTiO₃, (b)Ba(Zr0.12Ti0.88)O₃

BaTiO₃ film. A dielecteic constant of 380 and loss tangent of 2.6 % were obtained at the room temperature. A leakage current of the Ba(Zr0.12Ti0.88) O₃ thin films of 1.0×10^{-5} A/cm² was measured at 400 kV/cm.

1)D.Henning, A.Schnell and G.Simon: J. Am. Ceram. Soc., <u>65</u>, 539-544 (1982).

2)T.Hayashi, N.Oji and H.Maiwa: Jpn. J. Appl. Phys 33, 5277-5280 (1994).