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A novel description of unrelaxed defect energies without explicit pairwise terms in semi-empirical tight 
binding method was obtained for the first nearest neighbour interaction model. The total energy per atom 
in perfect lattice estimated from the experimental defect energies using this description is a measure ofthe 
accuracy of the potentials on the defect energies. Pair potentials, simplest embedding atom method and 
semi-empirical tight binding recursion method are applied to the vacancy formation and three principal 
surface energies of aluminium. 

1. INRODUCTION 

The reliable atomistic level simulation for inves­
tigating real materials should be achieved by the 
fast calculations of accurate interatomic poten­
tials. O(N) methods are target for the practi­
cal usage on simulations, and many methods are 
proposed[1-4]. Their formulation is usually the 
sum of the empirically determined pairwise repul­
sive term and electronic bonding term. The accu­
racy and the range of validity of these schemes are 
usually determined by the structure energy differ­
ence. From the practical usage of the potentials 
the estimated defect energies are very important 
measure for their reliabilities. We have simple 
measures of the applied limits on defect energies 
for the pair potentials and embedding atom meth­
ods[5], whereas we don't have any well-defined 
one for newly developing O(N) potentials. 

In this letter we will see that the unrelaxed 
defect energies are estimated with the calculated 
bonding energy but without the explicit pairwise 
term. Using experimental defect energies, the ac­
curacy of the interatomic potential will be deter­
mined only by the bonding energies. This new 
measure applied to the classical pair potential, 
simplest form of the embedding atom method 
(EAM) and the semi-empirical tight binding (TB) 
recursion method, which is one of the attract­
ing O(N) methods, on the vacancy formation and 
three principal surface energies of aluminium. We 
will discuss the factors for the better convergency 
shown in the semi-empirical tight binding recur-
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sion method. 

2. FORMULATIONS 

We assume the first nearest neighbour interaction 
with unrelaxed defect structures, becasue of the 
small difference between relaxed and unrelaxed 
models and the dominant contributions of the 
first nearest interactions even in the further near­
est neighbour models. The total energy for the 
semi-empirical TB methods is written in the sum 
of the repulsive term and bonding term, namely, 

Etotal = Erepul + Ebond· {1) 

The repulsive term includes every contribution 
which is not included in bonding term, such as 
exchange-correlation, non-orthogonality, or elec­
trostatic interactions[6]. The repulsive term usu­
ally take to be pairwise as follows 

Erepul= L </J(Rij)· 
all bond 

Then the total energy per atom is written as 

(2) 

(3) 

where z0 is the coordination number of perfect 
lattice, </Jo and Eg;~T are equilibrium repulsive 
energy per bond and equilibrium bonding energy 
per atom respectively. Although the total energy 
of some potentials are fitted to the cohesive en­
ergy, we leave the total energy as it is for the 
following discussion. 

The defect energy is defined by the energy dif­
ference between the initial perfect lattice and the 



final defect lattice, namely, 

E _ Edefect Eperfect 
defect - total - total · (4) 

Substituting eqns.(1) and (3) into eqn.( 4) then we 
have 

E _ ).. dEdef ect 
defect - - Zw·o + bond (5) 

where z1 is the number of broken bonds and 
dEt:!;ct is the contribution from bonding term. 
The repulsive energies per bond should be the 
same as those of perfect lattice, because we take 
the assumptions of unrelaxed condition and pair­
wise interaction for </J(R). From eqns.(3) and (5), 
we will find a novel expression of the defect en­
ergy, namely 

E _ Z1 (E Eatom) dEdefect defect - -- 0 - bond + bond · 
zo 

(6) 

Using this equation, reversely, we can estimate 
the total energy per atom from experimental de­
fect energies and calculated bonding energies, but 
no explicit repulsive energies. We will explore 
specific cases for interatomic potentials, such as 
pair potentials, embedding atom method, and 
semi-empirical TB recursion method. 

2.1. Pair potentials 

The conventional pair potentials are thought as if 
E atom d dEdefect · h Th h bond an bond vams . us we ave 

from eqn.(6). 

Edefect = _ Zl Eo 
zo 

(7) 

For the vacancy formation energy, the z0 near­
est neighbours to the vacancy site have their co­
ordination of z0 - 1, then the total broken bond 
become z1 = zo. Thus the wrong estimation of 
the vacancy formation energies are extracted as 

Edefect =-Eo. (8) 

2.2. EAM 

The simplest form of the £AM, which is lead from 
the second moment approximation[7,8], describe 
the bonding energy at equilibrium as follows 

(9) 
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where lho I is the average hopping integral at equi­
librium. For the calculation of eqn.(6), only the 
Oth order value of lhl is necessary. Simplest es­
timation has been achieved by taking some spe­
cific shape of the repulsive and hopping integral 
functions, such as exponential, </J( R) ex: exp( -pR) 
and h(R) ex: exp( -qR) respectively. Substituting 
these functions to eqn.(3) and taking the equilib­
rium condition at R = Ro, the bonding energy 
per atom and bonding energy of defect structures 
are described as follows, 

Eatom _ -pjqEo (10) 
bond- 1-p(q 

and 

dEdefect = _"" JZi- VZO p(qEo (ll) 
bond ~ .JZo 1 _ p / q 

' 
where the summation is taken over the all site 
with bond numbers varying from the perfect lat­
tice. 

Vacancy formation energy is estimated by sub­
stituting eqns.(10) and (11) into eqn.(6) and the 
same way as in the pair potentials 

Edefect 
Eo 

-zo (1- pfq)zo (12) 

JZO=l- Fo pfqEo 
-zo Fa (1- pfq) 

(2- pfq)Eg;~d: 
(1- p(q)2 

(13) 

where the second equality follows by expanding to 
first order of 1/z0 as vz;=l- vzo ~ -1/2.JZO. 
The same expression has been already obtained 
by Allan and Lannoo[9]. Using typical values of 
p(q, three or five[8], andthe cohesive energy for 
lEo I, we have a well known right relation between 
cohesive energy and vacancy formation energy, 
namely Ev = 1/4 ,...,_ 3/8Ec[10]. 

2.3. TB 

The algorithm used for the semi-empirical TB re­
cursion method is developed for the bond. order 
potential[ll], whose bond energy is equivalent to 
that of conventional site-diagonal tight binding 
recursion calculations. The bonding energy in­
cludes covalent bond energy and promotion en­
ergy[6]. The former is calculated by the recursion 



Table 1: Total energy per atom estimated from the defect energies for pair potentials, EAM and TB. 
The number in parenthesis for TB indicates the moment order. The units are in eV 

potential pair EAM 
vacancy -0.69 -1.43 

(100) -1.73 -3.85 
(110) -1.66 -3.70 
(111) -2.00 -4.31 

max deviation 1.31 2.88 

algorithm for a specific moment level and the lat­
ter by the sum of the products between the self­
energy level and the electron number difference 
in each orbital between the isolated free atoms 
and the atoms in solid. For the moment calcu­
lation we need a tight binding parameter set for 
hopping integrals and self energies, which are ex­
tracted from the first principle calculations. For 
aluminium, we use the sp bonded model with the 
parameter set obtained from APW calculation by 
Papaconstantopoulos[12]. The calculation in de­
tail was given in the previous paper[13]. 

Note that the bonding term is obtained only 
by the absolute values of the tight binding pa­
rameters and no other approximations are nec­
essary such as the function shape of distant de­
pendence. Also note that the semi-empirical tight 
binding recursion calculation with the second mo­
ment level is equivalent to the simplest EAM ex­
cept the inclusion of the orbital dependent hop­
ping integrals and the promotion energy. The 
electronic structures of atoms near defects are 
heavily distorted and then the energies are cal­
culated under the assumption of the local charge 
neutrality, which was achieved by shifting the self 
energy levels with keeping the energy difference 
constant. 

3. RESULTS 

The total energies per atom estimated from de­
fect energies for pair potentials, EAM and TB 
are shown in 'table I. The experimental values 
are 0.7eV for the mono-vacancy formation energy 
and 1140mJ jm2 for the surface energies. The 
surface energies are calculated by the supercell 
models with minimum unit areas. Thus the bro-
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TB(2) TB(4) TB(16) 
-5.24 -4.10 -4.37 
-5.74 -4.62 -4.74 
-5.52 -4.68 -4.80 
-6.01 -5.08 -5.17 
0.77 0.98 0.80 

ken bonds are 8 = ( 4) + ( 4) and 6 = (3) + (3) for 
the first layer of (100) and (111) principal surfaces 
respectively, and 6 = (5) for the first layer plus 
(1) for the second layer of (110). The results of 
EAM are obtained from eqn.(??) with pfq of two, 
which leads good estimation of the structure sta­
bilities of wide range of sp bonded elements[14]. 
The results for TB are given for the 2nd, 4th and 
16th moment orders as indicated by the numbers 
in parentheses. 

All the total energies per atom estimated from 
experimental defect energies deviate from the 
experimental cohesive energy, 3.39eV for alu­
minium. Inversely using a specific value of the 
total energy per atom we can see how accurately 
the potentials estimate the defect energies. The 
deviation of EAM is the largest in all the poten­
tials examined in this paper. Using the total en­
ergy per atom reproducing the appropriate va­
cancy formation energy, the surface energies are 
estimated to be anomalously small[15]. Using the 
right relation between Eo and the vacancy forma­
tion energy in eqn. ( 13), the value of p / q should be 
larger than two and the surface energies become 
much smaller. Adjustment of the function shapes 
and thus more appropriate relation between Eo 
and the defect energies does not improve this re­
lation drastically. 

The deviations of the results of TB recursion 
methods are much smaller than those of other 
potentials. We will see how TB recursion meth­
ods achieved this improvement. At first, we no­
tice that the deviations of estimated total ener­
gies per atom don't decrease as increasing the mo­
ment levels. Of course, the contribution from the 
higher recursion levels is important for reproduc­
ing other physical properties, such as elastic con-



stants and the structure energy difference. Due 
to the change in the coordination number ne&r 
the defect structures, the useful moment theorem 
tells that the energy change is given to the first or­
der by the second moment change (see eqn.(6.64) 
of [16]). The results in table I clearly indicates 
that the values of the defect energies should be 
largely controlled by the lowest recursion level. 
Thus we can discuss the difference between the 
EAM and the simplest TB(2). Except the auto­
matic achievement of the local charge neutorality 
in EAM, which changes few percent of the bond­
ing energy, there are two main improvements in 
TB comparing to EAM; more accurate descrip­
tion of the electron orbitals and additional pro­
motion energy. The promotion energy reduces 
roughly 20% from the bonding energy, which is 
very large contribution. Even at the atoms near 
defects, however, this value alter only few per­
cent from the perfect atoms. Therefore, the con­
tribution of the promotion energy for the defect 
energy is not so dominant. The remaining effect 
is only the appropriate description of the electron 
orbitals. EAM use only one average hopping inte­
grals, whereas the simplest TB(2) use the orbital 
dependency. Althought the effects of the orbital 
characters should be explored more carefully, the 
accuracy of the potentials, in other words the 
tight binding parameters, are determined only by 
the bonding energy calculation with the lowest 
recursion level and eqn.(6) under the assumption 
of the pariwise repulsive interactions. 

4. CONCLUSIONS 

The useful estimation of total energy per atom 
from the defect energies without explicit pair­
wise repulsive contribution was given under the 
unrelaxed and first nearest neighbour interaction 
model. The semi-empirical TB recursion methods 
improved the absolute value of the defect ener­
gies, but not sufficient. The increasing of the mo­
ment order did not reduce the error as expected 
from the moment theorem. More detail discus­
sion revealed that the factor which improved the 
convergence is not due to the promotion energy. 

The easiest way to reproduce the defect ener­
gies empirically is the including of the coordina­
tion dependence in the repulsive terms, because 
the non-orthogonality interactions are main con-
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tributions in them[6]. If we use the coordina­
tion dependence in the repulsive term without 
any general formulation of the overlap integral, 
however, we will loose the physical background 
and transparancy of the potentials. The other 
way is the using of more appropriate tight binding 
parameter set for the orthogonal basis extracted 
from the first principle calculations, and/or the 
including of the d orbital interactions. 
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