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The plastic slip process in face centered cubic metals is analysed by finite element continuum mechanics 
using models for behavior of dislocations. Density evolution and accumulation of dislocations during slip 
deformation in metal microstructures are described to evaluate strain hardening of slip systems. Some essential 
features of the system are described and analysis results of dislocation accumulation and stress-strain response 
of some model crystals are shown. 

1. INTRODUCTION 

Movement and accumulation of dislocations in 
metal microstructures are points of crucial importance 
in the study of deformation and fracture of metal 
crystals. We have two typical length scales for 
dislocations: one is the magnitude of Burgers vector, 
which is at the same order as lattice constants, and 
the other is mean slip distance of dislocations in 
microstructures, which is not defined by dislocations 
themselves but dependent on deformation history, 
temperature, grain size or mean distance of 
strengthening particles. To study behaviors of 
dislocations in such a longer length scale, presumably 
in micrometer order, a technique has been developed 
[1,2] where finite element analysis for slip 
deformation in continuum but non-uniform media is 
combined with models of movement and 
accumulation of dislocations. We have to introduce 
basically two kinds of models for dislocations: one 
is the statistically stored dislocations and their mean 
slip distance before they stop moving; the other is 
the geometrically necessary dislocations, density of 
which is proportional to gradient of plastic slip strain 
[3]. To describe interaction between dislocations on 
different slip ·systems and to account for rapid 
hardening by multiple slip, we utilize an interaction 
table between slip systems where magnitudes of the 
interaction are described in terms of dislocation 
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reaction. 
In this report, we briefly describe the whole 

structure of the simulation system which includes 
governing equations for slip deformation of f.c.c. 
crystals, dislocation models and correlation between 
them. Some results of slip deformation analysis are 
shown and calculated density distributions of 
dislocations are compared with experimental or 
theoretical ones. 

2. CRYSTAL PLASTICITY ANALYSIS WITH 
DISLOCATION MODELING 

2.1 Mathematical framework 
Fig. 1 shows elements used in our crystal 

plasticity analysis system and related topics. 
Elements in the upper left corner give a framework 
for the crystal plasticity analysis; geometry of the 
metal microstructure is described by finite elements 
and their deformation is analyzed with the constitutive 

equation. 
The plastic slip is assumed to occur on { 111) 

slip plane and in <110> slip direction (Fig.2). Due 
to the symmetric character of the lattice of the face 
centered cubic type crystal, there are twelve slip 
systems. Activation condition of these slip systems 

is given by Schmid law; When the critical resolved 
shear stress for the slip system n is written as e<n)' 
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Fig. 1 Crystal plasticity analysis system based on the finite element method and models for behavior of 
dislocations. 
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Fig. 2 Thompson's tetrahedron. Its surfaces and 
edges correspond to slip planes and slip directions of 
f.c.c. crystals. 

the Schmid condition is given by the following 
equations. 

p ~~) (f .. - e (n) 
1) 1 J- ' 

(n) • • (n) 
p ij (f ij = e ' (n=1, .. ,12), 

where 

(1) 

(2) 
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(3) 

er ii denotes stress in the global coordinate system 
and dotted symbols denote their increments. vi and 
b; (i=1-3) are unit vectors normal to the slip plane 
and parallel to the slip direction, respectively. 
Superscripts in parentheses denote the slip system 
number. P . .<n> is the outward normal of the yield 
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hyperplane for the slip system n in the stress space 
[4]. 

Increment of the critical resolved shear stress is 
comprised of contributions from temperature change 
and strain hardening. 

e. (n) - T. ~ h (nm) • (m) 
--q +L., y . (4) 

m 

The parameter h(nml defines the strain hardening 
coefficient. If rotation of the crystal orientation during 
deformation is neglected, which is acceptable while 
the deformation is small, the constitutive equation 
for slip deformation is written as follows [5-7]. 



. se ~~( (nm) -1 (n) (m) -1. *. 
Gij=[ ijkl+ £.-J£.-J h ) Pij Pk1 ] (ekl-akl'l) , (5) 

n m 

a:l = Okttl + q L L (h (n m)rl Pkin) 
n m (6) 

2.2 Models for dislocations' behavior 
The critical resolved shear stress is defined as a 

function of temperature and density of accumulated 
dislocations [1]; 

12 - r-;:::\ 
9 (n) = 9o(T) + L n (nm) aJ1,b'V Pa (m). (7) 

m=1 

The first term 90(T) gives the lattice friction for 
movement of dislocations, which is a function of 
temperature and is defined by experimental data for 
the temperature dependence of the yield stress. The 
second term represents the forest effect of 
accumulated dislocations on moving dislocations. 

P~m) denotes the density of dislocations which have -
accumulated on the slip system m. Constants b, ~ 
and a denote magnitude of the Burgers vector, the 
elastic shear modulus and a numerical factor of order 
0.1, respectively. The matrix gcnml is named the 
interaction matrix of the slip systems. The interaction 
of two dislocations is categorized into six types [8,9] 
by geometrical arrangement of Burgers vectors of 
the two dislocations. Since the interaction of slip 
systems originates from interactions between the 
moving and the accumulated dislocations, each 
component of the interaction matrix must be defined 
in accordance with the category of the dislocation 
interaction [1]. 

Let us write the contribution to Pa {m) from the 
statistically stored and geometrically necessary 
dislocations as [10], 

(m) (m) (m) (m) 
Pa = Ps + CePG,edge + CsPG,screw (8) 

where p~m> denotes the density of the statistically 
stored dislocations on the slip system m, while 

(m) (m) . 
Pa,edge and Pa,screw denote the dens1ty of the 
geometrically necessary dislocations. 

Density evolution of the statistically stored 
dislocations due to plastic slip is evaluated by the 
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following model. 

.(n) •(n) / b-L(n) 
Ps=cy s· (9) 

Here, c is a numerical factor of order 1 and ~ Cn> 

denotes the slip distance for statistical storage [3] of 
dislocations on slip system n. We have introduced 
some models for the statistical slip distance as a 
function of shear strain [6] or density of accumulated 
dislocations[!]. The strain hardening characteristics 
of pure metal single crystals is largely influenced by 
the models for L

5 
Cn>; model for L

5 
Cnl is the most 

important factor to reproduce realistic strain 
hardening characteristics of pure metal single crystals. 

The geometrically necessary dislocations 
accompanies to gradient of plastic shear strain. The 
edge and screw components of the geometrically 
necessary dislocations on slip system n are [11], 

(n) - 1 ay<n) b~n) 
Pa,edge--;::; -a- 1 

b Xi 
(10) 

(n) 1 a'V(n) {n) (n) 
P - EiJ'k = --' bJ· vk , G,screw- - a 

b Xi 

(11) 

which are evaluated by numerical differentiation of 
the shear strain distribution. 

If we suppose that Pa (m) is a time independent 
internal state variable, q and hCnml are calculated from 
eqs (4), (7) and (8) as follows. 

q=- ~o(T) 
aT · 

':'le <n> 
h(nm) = _o_· _X 

OPa(m) 

OPs oPG,edge + oPG,screw 

[ 

(m) ':'1 (m) ':'1 (m) ] 
--+C Cs---
()y(m) ()y{m) ()y(m) · 

Eq. (13) may be written simply , 

..,(nm) J h(nm)= a~u _C_ + Ce + Cs ~ L(m) L(m) L(m) ' 
2--/ Pa (m) l S G,edge G,screw 

(12) 

(13) 

(14) 

( ) (m) d . 
where L;,edge and La,screw correspon to geometric 



(b) (c) 

Fig. 3 (a) Simplified model of precipitate~matrix.system. On th~ upper and bottom. surfaces of the specimen, 
pulling force is uniformly applied. Crystal orientation is chosen so that the slip plane normal and slip direction 
of the primary slip system lie parallel to the specimen surface. (b) Simulation result for the distribution of the 
edge component of geometrically necessary dislocations on the primary.slip system •. Gray level used in the 
area of precipitate corresponds to the zero dislocation density. (c) Schematic illustration of the geometrically 
necessary dislocations obtained in (b). 

slip distances of dislocations [3]. 

3. NUMER.ICAL EXAMPLE 

Let us simulate the dislocation accumulation 
arround a predipitate. Fig. 3(a) illustrates the 
employed model; the model is a rectangular shaped 
plate with dimension 30 x 30 x 1 microns. The 
plate includes a rectangular shaped precipitate whose 
latetral dimension is 10 microns. Lattice friction of 
the precipitate is chosen to be hard enough compared 
to that for the matrix. Then the plastic slip occurs 
only in thematrix region. The yield stress of the 
matrix is 22.32 MPa. Fig. 3(b) shows the density 
distribution of the edge component of the 
geometrically necessary dislocations on the primary 
slip system when the average tensile stress is 22.57 
MPa. The maximum of the shearing strain on the 
primary slip system at this deformation stage is about 
0.38 %. Lighter the gray level, larger the dislocation 
density. The gray calor in the precipitate region 
corresponds to zero density. In the upper left area 
the density is negative and in the lower right area 
the density is positive. The minumum and the 
maximum density near the upper left and lower right 
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edges of the precipitate are -1.67 and 1.70 x 10 12 

m·\ respectively. Fig. 3(c)shcematically shows the 
dislocation distribution. Positive and negative 
dislocations are punched out from the precipitate. 
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