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We have simulated a phase separation process considering elastic constrain in a substitutional bee 
binary alloy by using the Monte Carlo method combined with the static variational method. We have 
used the Johnson type potentials for the constituents. An isotropic or a little anisotropic structure is 
generated in the alloy of which elastic constants of the second phase are harder or softer than those 
of the matrix, and an anisotropic structure is produced in the alloy with the same elastic constants 
as those of the matrix. The formation of anisotropic structure is not resulted from the growth to the 
lowest and stable shape of second phase in energy, but from the dynamical process of phase 
decomposition associated with nonlinear many body effect. 

!.INTRODUCTION 

It is well known that an elastic constrain 
influences a phase stability and a shape of the 
second phase (precipitate) during a phase 
separation process. Many workers [1- 10] have 
studied the process considering the stable 
geometric shape of second phase and the elastic 
effects. However, few three-dimensional 
discrete model with nonlinear many body 
effects have been investigated on the dynamical 
process of phase separation of second phase in 
elastically anisotropic crystal. We then 
simulate the phase separation processes by the 
Monte Carlo method combined with the static 
variational method using some pairwise 
interaction potentials between the constituents 
by constructing a bee substitutional alloy with 
elastic anisotropy. 

2.SIMULATION METHOD AND MODEL 

2.1. Simulation Method 
We describe only a short essential features, 

as a detailed description of the method is 
already reported [11]. All lattice sites are 
occupied randomly with the solute atoms and 
the vacancies according to the compositions. 
One of the vacancies is then selected by a 
random number (R). A vector sum of forces 
acting to every atom occupying within the 11th 
nearest neighbor sites from the vacancy is 
computed by taking a gradient of the pair 
potential, and then each atom is displaced 
infinitesimally toward the direction of the force. 
This variational procedure [12] is iterated until 
the total interaction energies between the 
atoms reach to the minimum value (E;). We 
adopt one of the nearest neighbor sites of a 
vacancy for the vacancy jump by use of R, and 
repeat the same iteration until obtain the 
minimum value (Ei) of the total energies. We 
therefore calculate the difference between the 
total energies before and after the vacancy 
jump, .JE=Ei- E;. If .dE s; 0, we make the 
vacancy migration to the site, and if .JE>O, we 
calculate the transition probability, Ri = 
exp(- ,dE I kB T) (kB : the Boltzmann constant, T 
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Figure 1. Potential curves used in the present 
simulations. 

:the absolute temperature). Then, if R ~ ]{, we 
make the vacancy jump, otherwise do not. In 
either case, we take the resultant state as a 
new state of the crystal and repeat the 
procedure. We define the number of the 
procedures as the parameter of time (t) in the 
present simulations. 

2.2. Simulation model 
We set following conditions for the 

simulation; the total number of lattice sites 
(N) : 27000, the vacancy concentration ( Cv) : 
1.85 X 10-3, the solute atom concentration ( Cs) 
: 0.2, the aging temperature (T) : 1000 K. A 
periodic boundary condition is assigned to the 
crystal. The potential curves used in the 
present simulation are shown in Figure 1. The 
curve M- M represents the potential between 
solvent atoms (matrix) obtained by Johnson 
[13} for a- iron. The curve M-S also represents 
the potential between a solvent atom and a 
solute atom. We have assumed four kinds of 

Table 1 
Elastic constant ratios of solute atoms 
(subscript S) to the matrix (=P1) (subscript M) 
obtained by potential curves of Pl, P2, P3 and 
P4. 

P2 P3 P4 ·--------------------------

( Cu- c12)s/( Cu- C12)M o.320 1.20 1.44 
( C«)s/( C«)M 0.369 1.38 1.66 

potential curves between solute atoms (P1, P2, 
P3, P4) as depicted in Figure 1. 

The elastic constants for the potential curves 
are obtained according to the equations 
employed by Johnson [13]. The elastic 
constants of second phase for P1 are equal to 
those of the matrix, because the curve Pl is 
obtained by shifting the M- M so that a radius 
of the solute atom for P1 is 10% larger than 
that of the matrix. These elastic constant ratios 
of P2, P3 and P4 to the matrix are listed in 
Table 1. The second phase for P2 is elastically 
softer than the matrix, and those for P3 and P4 
are harder than the matrix. 

3. RESULTS 

In the case of the softer second phase than 
the matrix (P2), the solute atoms formed a site 
percolation cluster [14]. On the other hand, 
many isolated clusters are generated for the 
second phase equal to or harder than the 
matrix (Pl, P3, P4). 

We have studied phase separation processes 
by means of structure function that is a Fourier 
transform of spatial distribution of solute 
atoms. According to the results of our analysis 
by the structure functions, the alloy of which 
the second phase is elastically equal to the 
matrix shows a notable anisotropic structure 
(P1), and a little anisotropic or an isotropic 
structure is formed in the alloy with the softer 
or harder second phase than the matrix (P2, P3, 
P4). 

4. DISCUSSION 

While the shape of second phase is 
influenced by many factors, it is considered 
generally that the. harder second phase 
produces the anisotropic structure more 
appreciably. 

The isotropic phase separation is, however, 
observed in the alloy with the hardest second 
phase (P4) in the present simulations. It is 
considered that as the minimum of potential 
curve for P4 is lower than any other potentials 
as illustrated in Figure 1, the interfacial energy 
overcomes other energies such as the elastic 
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Table 2 
Total energies (E ) of atomic configurations 
computed by the potentials P1, P2, P3 and P4. 
The underlined values are obtained by using 
original potentials for respective configurations. 

atomic E /10- 15 

configuratiof! P1 _ P2 P3 ____ P4 
(a) t=l.2X 107 -5.80 -5.88 -5.77 -6.05 
(b) t=2.5X 106 -5.75 -6.17 -5.72 -6.13 
(c) t=l.18X 107 -5.81 -5.90 -5.78 -6.06 
(d) t=l.321X 107 -5.84 -5.95 -5.80 -6.14 

energy that effects the anisotropy of the 
structure in the alloy. The alloy for P4, 
therefore, generates the isotropic structure. 

The curves ofP1, P2 and P3 have the same 
value and position of the minimum, but their 
shapes are different. Consequently, it is 
expected that the alloy for P3 exhibits more 
anisotropic structure than those for P1 and P2, 
because the second phase of alloy for P3 is 
elastically harder than the others. The results 
of simulations, however, show that the 
anisotropy of the alloy for P3 is not so definite 
as those for Pl. Then, we carried out following 
calculation to investigate the results. We have 
applied all potentials (P1, P2, P3, P4) to each 
configuration of alloy aged for long time to 
obtain the total energy of each alloy. We 
summarize these values in Table 2. The 
underlined values listed in (a), (b), (c) and (d) of 
the table represent the total energies of the 
alloys obtained by use of the respective original 
potentials. The lowest energy in Table 2 is the 
atomic configuration of alloy by P4 except (b) by 
P2, this may be caused by the lowest minimum 
value of the curve P4 in all potential curves. It 
should be noted that the lowest energy in the 
atomic configurations is not the atomic 
configuration produced by original potential P1 
(a) but the one by P4 (d), as well as the case of 
P3 (d). 

In order to make clear the reason, we 
compute changes in energies associated with 
the formation of cluster containing three solute 
atoms shown in Figure 2 by using potentials of 
P1, P2, P3 and P4. In Figure 2, the circles 
denote the solute atoms, and the numbers 
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Figure 2. Migration paths for forming a cluster 
by exchange of a vacancy ( a square) and a 
solute atom (a circle). 

Table 3 
Changes In total energy (!lE) of crystals 
containing 3 solute atoms and one vacancy in 
forming a cluster via various migration paths as 
illustrated in Fig.2. 
path !lEI.I0-2oJ 

No. P1 P2 P3 P4 

1 4.73 1.74 5.64 3.56 

2 2.01 -0.133 2.73 -2.24 

3 -1.22 -2.53 -0.602 -5.57 

4 5.72 1.9 6.36 6.84 

5 2.81 -0.552 3.52 1.55 

6 5.93 1.95 6.82 5.07 

7 -2.49 -2.50 -2.52 -5.18 

8 -3.85 -2.02 -4.29 -4.69 

9 -6.48 -4.69 -6.88 -9.89 

10 -3.85 -2.02 -4.29 -4.69 

represent some paths for formation of a cluster 
after exchanging the vacancy site drawn as 
square. The changes in total energies are listed 
in Table 3. The positive value of LlE means an 
increase of energy associated with the formation 
of the cluster. The results for the alloy having 
three solute atoms and one vacancy are listed in 
Table 3. In changes of LlE from No.1 to No.3, 



Table 4 
Changes in total energy (1:1E) of cryst~ls 
containing 5403 solute atoms and 51 vacanc1es 
in forming a cluster via various migration paths 
as illustrated in Fig.2. Each value is an 
average of 5000 configurations. 
path 1:1E I 10 20J 

No. _:R!_ ____ ___R~------ P3 
1 5.46 
2 

3 
4 

5 
6 

7 

8 
9 

10 

0.833 
-0.450 
-1.89 

0.719 
-0.516 

1.04 
-2.05 
-1.22 
-3.06 
-1.38 

4.92 
2.11 

-0.724 
5.85 
2.78 
6.01 

-2.29 
-3.65 
-6.09 
-3.80 

P4 
4.17 

each of No.2 and No.3 of P4 has the smallest 
and the negative value. This result agrees with 
the formation of isotropic structure in the alloy 
for P4. The values of LiE from No.4 to No.6 are 
positive for all potentials, except for No.5 ofP2. 
This indicates the difficulty of forming clusters 
aligned along the <111> direction. The result 
that the smallest value of LiE is obtained for 
No.4, No.5 and No.6 of P2 explains the growth 
of site percolation cluster, in which the solute 
atoms link each other by the first neighbor 
site or the <111> direction. All the values of LiE 
from No.7 to No.lO are negative. Evidently, the 
cluster can grow easily along the <100> 
direction. Since the value of LiE from No.l to 
No.6 by Pl are less than that by P3, the 
isotropic cluster can grow more easily by the 
potential Pl than that by P3. This contradicts 
to the results of the simulations, and 
furthermore the tendencies to form clusters 
along the <lOO> direction is not consistent with 
the results, as all values from No. 7 to No.lO of 
P3 are less than those of Pl. We have, 
therefore, adopted the same atomic 
configurations of alloys containing a number of 
solute atoms and vacancies as those used in the 
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simulations. These results are listed in Table 4, 
where each value is averaged over 5000 
configurations. These values are in consistent 
with those of the simulations. 

5. CONCLUSION 

The interaction between the constituents in 
the formation process of clusters generates an 
anisotropic growth of cluster. As a result, a 
lower migration path for atoms brings out the 
anisotropic arrangement for harder second 
phase than the matrix. We have then c~nfirm~d 
that the contribution to growth of amsotrop1c 
cluster is not from the stable shape in respect 
to energy but the dynamical process of phase 
separation. 
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