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In the frame of one-dimensional Frenkel-Kontorova crystal model the collision between 
two breathers was studied. The range of parameters of quasiparticles where the interaction is 
accompanied by converting energy from kinetic form to potential form or conversely was 
found. The exchange of energy can, under certain circumstances, lead to the appearance of 
kink-antikink pairs which represent the dislocation loops in the frame of the present model. 
The condition for inelastic interaction of quasiparticles was found. 

L INTRODUCTION 

The Frenkel-Kontorova model [1] has 
played an important role in the 
understanding of the essential properties of 
dislocations. The success of the model is 
attributable to the fact that in the longwave 
approximation it leads to the wellknown 
nonlinear sine-Gordon equation for which 
some analytical solutions were obtained. 
Due to this fact the discreteness of the 
model was leaved aside and it has been 
used only in special cases, such as for the 
determination of Peierls barrier [2]. 
However a series of important effects are 
lost when we assume continuous sine
Gordon equation instead of a set of 
difference-differential equations of the 
Frenkel-Kontorova model. The most 
important effect is a nontrivial interaction 
between quasiparticles which leads to 
changes of their properties or even to their 
transmutations. It is known that for the 
sine-Gordon equation the effects of inelastic 
interaction of solitons are absent and the 
number of solitons is conserved [8]. The set 
of equations of the Frenkel-Kontorova 
model may be considered as the sine-
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Gordon equation perturbed by the 
discretization process. Such a perturbation 
is an essential prerequisite to the inelastic 
interaction. The sine-Gordon equation 
perturbed by various Hamiltonian and/or 
dissipative terms was studied analytically 
as well as numerically and the effects of 
nontrivial collision of solitons were found. 
The extensive literature on this matter is 
reviewed in the review [4]. The purpose of 
this paper is to show that the discretization 
perturbation gives rise to inelastic 
interaction of solitons and study the 
features of the interaction. 

2.FRENKEL-KONTOROVA MODEL 
OF CRYSTAL AND THE SINE
GORDON EQUATION 

Let us consider an infinite, linear array 
of identical point-mass atoms situated 
along x axis with position coordinates 
defined by Xi=ia, where i is an integer. 
Neighboring atoms are bonded by linear 
springs of length a and stiffness c. 
Influence of other atoms on the array is 
represented by cosinusoidal potential 
function with the amplitude A and the 



period a: 

U(u;)=-Acos(2nuda). (1) 

The equation of motion of the i-th atom 
IS: 

m(d2u;)/(dt2)=c(u;.l-2u;+Ui+ 1)
(2nA/a)sin(2nuila), (2) 

where u;=u;(x;) is the displacement of the i
th atom; m is the mass of atom. 

It is convenient to replace u; and t by a 
new variables cp; and -r related to u; and t by 
the equations: 

cpi=2nu;/a, -r=t(2n/a)(A/m) 112. (3) 

With Eqs. (3), Eq. (2) may be written as: 

( d2cp;)/ ( d-r2)- ( cp;.1- 2cpi+cp;+ 1)/h2+sincpi=O, (4) 

where 

h=(2n/a)(A/c) 112. (5) 

If the magnitude of his far less then 1, 
then the second term in Eq. (4) may be 
approximated by the second partial 
derivative of the continuous function cp(1;,-r) 
with respect to the variable 

1;=x(2n/a2)(A/c)ll2_ (6) 

In this case in parallel with Eq. (4) its 
long-wave approximation 

(d2 cp)/(d-c2)- (d2 cp)/(d1;2)+sin cp=O (7) 

may be considered. 
The long-wave approximation increases 

in accuracy with decreasing h. The step of 
approximation h may be considered here 
from two points of view. On the one hand, if 
the finite difference solution of Eq. (7) is 
wanted, h represents the density of finite 
difference mesh with respect to coordinate 1;. 
On the other hand, if the exact equation of 
a model is (4) then h represents the degree 
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of nonlinearity of crystal. As may be seen 
from Eq. (5), h depends on the ratio Ala 
which characterizes the function U (u;) and 
on the stiffness of springs ac or one can say 
that h depends on ratio Ale. 

A few solutions to the Eq. (7) have been 
obtained [5]. Here is one of them, which is 
called kink (antikink): 

cp=4arctan [exp( o(s-so+d(-r--co)))], (8) 

where O<d<1 is a parameter, which defines 
the velocity of kink; o=(1-d2)1 12; the 
magnitude of so defines the position of the 
kink at a time -r=-ro. 

The rest-energy of a kink i.e. its energy 
when d=O is 

(~)) 

One more solution to the Eq.(7), which 
is called breather is: 

cp=4arctan (B/C), (10) 

where B = 11 sin [ owa ( (-c--ro) - (s-so+d-ro) ) ], 
C= w cosh [ ~o ( (s-so+d-ro) - (-r--ro)) ). O<d<1, 
O<w<1 are the parameters which define the 
velocity and amplitude of breather 
respectively; so, -ro are the position and the 
phase of the breather at the initial time 
-r=O; 0=(1-d2) 112, 11=(1-w2) 112. 

The velocity of the breather d, its 
wavelength A and period T are related to 
each other by the expressions 
d=AIT, J...=2nod/w, T=2n:o/w. (11) 

The breather amplitude D depends on w 
only: 

D=4arctan (11/w). (12) 

The amplitude D increases as the 
magnitude of w decreases and as w tends to 
zero, D approaches 2n. 

If the breather does not move along the 
crystal (d=O), it has the energy 

(13) 



which is its rest-energy. So, Eb may vary 
from 0 to 2Ek (see Eq. (9)). The kinetic 
energy is added to the rest energy of a 
quasiparticle if it is in motion along the 
crystal. 

In the following section the results of 
numerical solution of Eq. (4) are reported. 

3. RESULTS AND DISCUSSION 

Let us consider the collision between 
two breathers moving towards each other 
with equal in magnitude but opposite in 
sign velocities and with the same phases, 
i.e. collision between breathers which are 
mirror images of each other. In such a 
situation, only one breather may be 
considered using the mirror boundary 
conditions. The initial conditions were 
defined by the Eq.(10), where we put r-0 
and !;i=i(2n/a)(A/c)"2. The distance 2l:;o 
between breathers at a time -c=-co was varied. 
In view of the fact that the motion of 
breather is periodic, it is sufficient to 
examine 0<2l:;o</.. 

First we consider the influence of 
nonlinearity factor h on the collision 
between the breathers. Magnitude of h 
should be chosen small enough so that the 
Eq. (7) is in rather good agreement with Eq. 
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Figure 1. The dependence of the amplitude 
of breathers after encounter D* on 
dimensionless distance 2l:;o/A. between 
breathers at a time r-0. Curves 1,2,3 
correspond to h=0,5n10·3'2, h=n10·3'2, 
h=2nl0·312. 
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(4), at the same time h should not be too 
small, so that the effect of discreteness of 
the Frenkel-Kontorova model could 
manifest itself. 

Fig. 1 shows the dependence of the 
amplitude of the breathers D* after the 
encounter on the dimensionless distance 
2l;o/A. between breathers at a time -c=O. 
Curves 1,2,3 correspond to h=0,5nl0·312, 
h=n10·312, h=2n1Q-3t2. The magnitudes of 
other parameters were d=0,2, w=0,2, -co=O. 
The amplitude of breathers before the 
encounter is D= 1, 7 44n. 

As may be seen from Fig. 1, there is a 
narrow range of parameter 2l:;o/A., where the 
amplitude of breathers changes as a result 
of the encounter. The decrease of the 
amplitude of the breathers means that a 
part of their kinetic energy conn<~eted with 
the motion along crystal transforms into 
the potential energy. After sueh an 
interaction the breathers with larger 
amplitude (rest-energy) and smaller 
velocity are formed. In the case of 
increasing of amplitude the opposite 
situation occurs. Outside of the narrow 
range mentioned above when two breathers 
collide they go through oml another 
recovering their initial properties. It is 
interesting that the greater is the velocity 
of breathers, the narrower is the range 
with the nontrivial interaction. 

It should be pointed out that the 
nonlinearity factor h strongly iniluenees 
the width of range of values of 2i;o/A. where 
the nontrivial interaction occurs. 

As Fig. 1 suggests, for curves 1,2 there 
is a range of parameter 2l:;o/A. where the 
amplitude of breathers after eollision ·is 
indeterminate (recall that according to Eq. 
(12) the amplitude of bn~ather can not be 
more than 2n). In this area the 
transmutation of quasiparticles takes place. 
Two types of rea<:tions were revealed. Two 
kink-antikink pairs or one kink-antikink 
pair and a breather with veloeity d=O were 
formed (see Fig. 2 and Fig. 3 respectively). 
The Eq. (4) is reversible in time, therefore 
the reactions deseribed above can be 



Figure 2. Collision of two breathers with 
two kink-antikink pairs formation. 

Figure 3. Collision of two breathers with 
one kink-antikink pair and a breather 
formation. 

reversed. 
The channel of non trivial interaction 

was found. The dependence of maximum 
displacement of the atom which is in the 
encounter point of the two breathers as a 
function of 2;,olf.. has a sharp inflection 
which position completely eorresponds to 
the region where the energy 
transformation oeeurs. This inf1eetion 
indicates the location of a separatrix in the 
phase space of the considered system. Near 
the separatrix the discreteness of the model 
manifests itself. 

4. CONCLUSIONS 

The equations of the Frenkel-Kontorova 
model as the sine·Gordon equation 
perturbed by the discretization process 
were considered. The collision between the 
two mirror-like breathers was studied and 
the narrow range of parameters of 
quasiparticles where the nontrivial result 
of collision is observed was found. The way 
of finding of the range was dese:ribed. Out 
of this range the perturbat;ion and its 
influence on the ehange of properties of the 
quasiparticles after their collision are of the 
same order. By contrast, inside the speeific 
range the small perturbation dramatically 
affeet the result of the collision. 
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