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Several investigators have found that the resistance to heat transfer at the interface between the two 
materials depended upon the direction of heat flow across the interface. Although many of the factors 
that affect the transfer of heat across the interface are reasonably well understood, the directional 
dependence of the thermal contact resistance has not yet been completely explained. In this paper, we 
evaluate the thermal contact resistance from the linear response theory by considering the scattering 
and transmission of phonons at the interface, it is found to be dependent on the temperature of the 
interface. The results of this can explain the reported behavior of thermal rectification. 

1 Introduction 

In 1936, Starr (1] conducted experiments with a 
copper-copper oxide rectifier which seemed to in­
dicate that thermal resistance at the interface be­
tween the two materials depended upon the di­
rection of heat flow across the interface. These 
results were later described in a standard text on 
rectifier (2]. However, in 1951, Horn (3] criticized 
Starr's experiments on the basis that Thomson 
e.m.f caused by the temperature gradient across 
the rectifier led to spurious results, since Starr 
used un-insulated thermocouples with a common 
lead. In 1955, Barzelay (3] found in the course of 
determining thermal resistance of aircraft joints 
that the resistance across the aluminum-stainless 
steel joints depended on the direction of heat flow. 
Since their experiments were not specifically de­
signed to test for the presence of this effect, they 
proposed further experimentation in the field. Fi­
nally, Roger and his group carefully designed ex­
perimental apparatus to determine whether the 
asymmetric heat-conduction effect really existed 
(4]. Rogers found a definite directional heat trans­
fer effect in the systems he studied. 

Williams and Fletcher reviewed the various, 
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often conflicting, investigations of thermal rec­
tification and found that directional effects ex­
isted but that experimental data were inconsis­
tent. This phenomenon, referred to as thermal 
rectification, is of significant importance in de­
sign of heat exchangers and spacecraft thermal 
control systems, and has potential applications 
in the thermal control of electronic equipment as 
a thermal rectifier. 

In the last twenty years a growing number 
of works have been published on thermal con­
tact resistance. Most of them are experimen­
tal works, but quite a few are theoretical. Al­
though many of the factors that affect the trans­
fer of heat across the interface are reasonably 
well understood, most of them are surface anal­
ysis, deformation analysis, the directional depen­
dence of the thermal contact resistance has not 
yet been completely explained theoretically. It 
has been known that the boundary between two 
dissimilar materials presents a thermal resistance 
to the flow of phonons. In this paper, we evalu­
ate the boundary resistance from linear response 
theory by considering the scattering and trans­
mission of phonons at the interface, both the the­
ory itself and the evaluation are exact. We found 



that the thermal contact resistance depends on 
the temperature of the interface. The directional 
heat transfer phenomenon at the interface of dis­
similar metals in a metal-metal contact can be 
explained by application of these results theo­
retically. In section 2 we evaluate the tempera­
ture dependence of the contact thermal resistance 
from Kubo formula, in section 3 we analyze the 
thermal rectification in dissimilar metal contacts, 
in section 4 we discuss the results and compare 
with the experimental results. 

2 Evaluation of the contact 
thermal resistance 

Consider an infinite medium consisting of two 
solids, solid 1 and 2 in the region z :; 0 and z 2: 0. 
It will be useful to calculate the average heat flux 
X at time t and position z1 in response to an ini­
tial temperature step AT imposed at position z. 
We define the ratio 

K(z z1 t) = x(z
1

,t) 
' ' D..T(z) 

(1) 

The surface conductivity K (the inverse of the 
surface resistance R) is obtained by setting z = 
z1 = 0 and t -+ oo. In other words, the tem­
perature step is imposed across the interface, and 
the heat flux is also measured across the interface 
when steady state is reached. 

Acording to the linear response theory, the 
surface conductivity K can be calculated by 

K(z,z 1 ,t) = ~~ 1t rdr J d2 rl.d2r~ 
x (J(r 1

, r)J(r, 0)) (2) 

where A is the transverse area of the sample, J is 
the energy current operate, and r = (r J..,z), etc .. 

For one dimensional system with coordinate 
f/J(z) and a position dependent density and mod­
ulus M(z), described by the Lagrangian density 

1 [ af/J] 2 1 af/J 2 £ = -p(z) - - -M(z)[-] 
2 at 2 {)z 

(3) 

848 

Eventuallywewantp(z) = Pl(P2),M(z) = M1(M2) 
for z ~ 0 (z 2: 0). It is straightforward to evaluate 
the Hamiltonian density and the energy current 

1i = 11"2(z) + ~M(z)[af/J]2 
2p(z) 2 az 

(4) 

J = _ M(z) 1r(z) af/J 
p(z) az 

(5) 

where 1r = p~ is the conjugate momentum and 
normal ordering is everywhere understood. When 
(5) is inserted into (2), the correlation involves 
four operators at two different times, schemati­
cally 

( J ( z1
, r) J ( z, 0)) 

,...., (1r(z1 ,r)f/J(z1 ,r)1r(z,O)f/J(z,O)) 

""'(1r(z1
, r)1r(z, O))(f/J(z', r)f/J(z, 0)) 

+(1r(z1
, r)f/J(z, O)}(f/J(z1

, r)1r(z, 0)) (6) 

by Wick's theorem. The other contraction does 
not contribute, since each J is normal ordered and 
there is no connected four point function since 
the Hamiltonian is quadratic. All results can 
thus be expressed in terms of the correlation func­
tion F(z,z1 ,t) = (f/J(z,t)f/J(z1 ,0)} and some alge­
bra leads to 

2iM(z)M(z1
) 100 

d 
T t t 

0 

()2 F ()2 F ()2 F ()2 F 
[ fJt2 azaz1 + ataz1 {)t{)) (7) 

Since we wish to calculate X when steady state is 
achieved, the time integral has been extended to 
infinity and for one dimension, A has been set to 
1. 

The freedom to choose z and z1 allows us to 
average over these positions e.g., by (1/ L) J

0
L dz. 

For convenience, we shall restrict z :; 0 and z 2: 
0, so M(z) = M2,M(z1

) = M1 are constants in 
the average. Since z, z1

, t are now all under the 
integral sign, we may freely integrate by parts; a 
little arithmetic then shows that the second term 
in (7) makes the same contribution as the first. 

secondly we introduce the Fourier transform 

F( 1 t) j dw F-( 1 ) -iwt z,z, = - z,z,we 
211" 

(8) 



which is related to the retarded Green's function 

G(z, z', t) = -i8(t)([4>(z, t)4>(z1
, 0)]} 

by [5] 

- I -2 - I ) F(z, z ,w) = f3 ImG(z, z ,w 1- e- w 

Inserting these into (7) then gives 

(9) 

(10) 

K = 8M1M2 ()() dw w2e-f3w H(w) 
T 2 Jo 271" (1- e-f3w)2 

(11) 

where 

{} - {} -
H(w) =!m oz G(z, z1 ,w)Im {)zl G(z, z1 ,w) 

(12) 

and the right hand side is understood to be aver­
aged over z, z'. Note that in (12), the two factors 
of G are forced to the frequency by the infinite 
time integral in (7). 

The Green's function can be evaluated from 
the defining equation, written in the frequency 
domain as 

0 0]- 1 [-p(z)w 2
- {)zM(z) {)z G(z,z ,w) 

= -h(z- z1
) (13) 

The function G has the interpretation of being 
a wave produced by a harmonic point source at 
z1 

( < 0) and observed at the point z (> 0). The 
solution to (13) is just plane waves in each re­
gion with a gradient discontinuity at z = Z 1

• The 
wave vectors for the plane waves are g; = w / v; in 
the two region i = 1,2, and v; = y'M;jp;. The 
retarded nature selects outgoing waves at infin­
ity. The amplitudes of the plane waves are ob­
tained by matching G across the three regions 
(z < z1,z1 < z < 0,0 < z) and the result is best 
expressed in terms of the impedance Z; = p;v; 

and the amplitude reflection coefficient r = (Z1-
Z2)/(Z1 + Z2 ). Then it is easily shown that 

1 1 - r 2 

H=----
8M1M2 

(14) 

The factor 1 - r 2 is just the energy transmis­
sion coefficient 'T. We then obtain 
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K-- - T 
1 100 dw w2e-f3w 

- T2 0 271" (1- e-f3w)2 
(15) 

which gives 

K=iTT (16) 

linear in the temperature T for such a one dimen­
sional system. 

3 Evaluation of the thermal 
rectification 

The directional heat transfer phenomenon at the 
interface of different metals in a metal-metal con­
tact can be explained theoretically by application 
of the result of the previous section. 

Let us consider the two different metals in a 
metal-metal contact system consisting a metal 1 
of thickness /1 and of metal 2 ofthickness /2, both 
have the same cross section. let /1 = /2, k; denote 
the thermal conductivity of the metal i(i = 1, 2) 
and Ti (i = 1, 2) denote the temperature of the 
end of the two metals respectively. The heat flow 
rate q can be expressed mathematically as follows 
[6]: 

q = Ktl.T (17) 

where K is the surface thermal conductivity at 
the interface evaluated in section 2 and tl.T is the 
variation of the temperatures of the two ends of 
metals. 

Suppose T1 > T2 , heat will flow from metal1 
to metal 2, the heat flow rate will be 

(18) 

Now, suppose we reverse the interface temper­
atures, heat will now flow metal 2 to metal 1. 

(19) 

We can calculate T12 and T21 by application 
of Fourier's law of heat conduction. 

ktTt + k2T2 
Tt2 = kt + k2 

(20) 

(21) 



Therefore, the ratio of these quantities is given 
by the expression, 

q12 k1T1 + k2T2 
(22) 

q21 k1T2 + k2T1 

From equation (22), if two metals are different 
(k1 =/= k2), we will have 

(23) 

Therefore, we can prove clearly that the direc­
tional heat-transfer phenomenon exist at the in­
terface of dissimilar metals in a metal-metal con­
tact system. 

4 Discussion 

This paper has given a qualitative explanation 
of asymmetric heat flow at the interface between 
dissimilar metals. In Table 1, we give some ex­
act quantitative calculations of this effect, and we 
find that thermal rectification effect at the inter­
face of Fe-Ag contact is biggest in these contact 
systems. On the other hand, the Calculation re­
sult of the ratio of hear flow rate at Al-Fe contact 
interface compares favorably with L. S. Fletcher's 
value [7] of approximately 0.76. 

Table 1: Calculation result of the ratio of heat 
flow rate at the dissimilar metal-metal contact 
interface 

Metal1 Metal 2 q12/ q21 
AI Ag 0.934425 
AI Au 0.954392 
AI Si 1.092150 
Fe Ag 0.793798 
Fe Au 0.817426 
Fe Si 0.911356 
Fe AI 0.844628 

Using Eq. (23) thermal rectification can be 
shown to exist for the contact between two dif­
ferent metals through which heat is flowing. It is 
possible to explain this phenomenon as a conse­
quence of the temperature dependence of bound­
ary resistance, it bases on the microscopic prop­
erties of the contacting material. An important 
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aspect of this conclusion is that thermal rectifi­
cation is a strong function of both the material 
properties. Because the total heat flux through 
the interface is carried by electrons and phonons, 
in this paper we only analyze the contact resis­
tance on phonon conduction. For further study, 
we should take into account 1) electron conduc­
tion 2) physical properties of any interstitial ma­
terials. 

In summary, it is apparent that thermal rec­
tification is a function of both the material prop­
erties. For dissimilar materials, the thermal con­
tact conductivity is higher when the interface has 
higher temperature. 
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