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A theoretical expression for an average velocity of mobile dislocations is derived by incorporating dy­
namic effects and thermal activation process. Combined with constitutive equation for mobile dislocation 
density,a stress- strain curve is calculated. The anomalies due to normal-superconducting transitions are 
qualitatively reproduced. 

1. Introduction 
Among various quantities characterizing dislo­

cations behavior, central quantities are density 
Nm and average velocity vof mobile dislocations. 
It was shown by Johnston and Gilamnn [1] that 
the semi-empirical knowledge of these quantities 
enable one to draw a stress-strain curve by sub­
stituting them into a constitutive equation given 
by 

dra = (1 _ lo ·Is· Nm · b ·V) . Is· K, (1) 
dye Se A 

where Ye, lo and A are, respectively, the displace­
ment, initial dimension and cross sectional area of 
a sample, Is the Schmid factor, Se the crosshead 
speed and K is the rigidity of the machine-sample 
combined system. 

Haasen and Alexander [2], then, proposed an 
equation describing the evolution and devolution 
of mobile dislocations density, Nm, in the follow­
ing differential form; 

dNm 1 _ ( ) -- = - · Bm · Teff • Nm · v, 2 
dy Se 

where Bm is a materials parameter specifying 
the multiplication rate. Noticeable in the above 
equation is the fact that the work hardening due 
to multiple dislocations is well incorporated by 
feed back effect through effective stress Teff given 
as 

! 
1L · b · N.h 

Teff = Tapp- {3 ' (3) 
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where IL and f3 are, respectively, the rigidity of a 
sample and the Taylor factor. The second term 
represents long range back stress field created by 
multiple dislocations which function to suppress 
further multiplications. 

In order to consolidate the theoretical basis for 
the stress-strain relationship, one needs to eluci­
date microscopic mechanism of determining the 
average dislocation velocities, v. The purpose of 
the present brief article is to derive the consti­
tutive equation for v to be combined with eqs. 
(1) and (2) in order to draw a stress-strain curve. 
A particular emphasis is placed on the cryogenic 
temperature for which dynamic ef lects induce 
various intljguing anomalies. 

2. Theoretical Model 
We start with the string model [3} to describe 

a moving dislocation motion which is given as 

where m is the mass of a dislocation, t the time, 
x and y are the space coordinates in the direc­
tions of extension and motion of a dislocation 
line, respectively, Bd is the damping constant due 
to various media such as electrons, phonons etc., 
r the line energy per unit length, b the Burgers 
vector and T ef f represents effective stress which 
is the difference between the applied stress Tapp 



and internal stress Tin caused by other disloca­
tions. The leading two terms represent inertia 
and damping of a moving dislocation which are 
termed dynamic effects manifested at cryogenic 
temperatures, while the third term together with 
the effective force describes static mechanical 
equilibrium condition. The solution of the above 
second order partial differential equation under 
the boundary conditions, y(O, t) = y(L, t) = 0, 
and initial conditions, y( x, 0) = 0 and 8y / 8t = v0 

is given as 

y = 

where v0 is the initial velocity, I the average sep­
aration of obstacles along a dislocation line and 1 
and w are measures of the damping defined as 

1 = Ba/2m and wo = (1rji) (f/m)1
/

2
• It is 

noted that the second term of eq.(5) is the dy­
namic contribution which modifies a solution of 
the static equilibrium equation given by the first 
term. 

It is noted that a dislocation overcomes an ob­
stacle with the aid of thermal assist even at cryo­
genic temperatures [4]. The thermal activation 
process has been successfully described within a 
framework of Eyring's rate theory and the acti­
vation energy, f:!.G*, is written as 

(6) 

where Go is the interaction energy between an ob­
stacle and a dislocation and Wa is the work per­
formed by a dislocation. The difficulty, however, 
stems from the fact that the thermal activation 
process is a stochastic process while the disloca­
tion motion described by eq.(4) is fully determin­
istic process. An incorporation of these two char­
acters in a single theoretical framework claims a 
sophisticated statistical mechanical approach [5], 
which is beyond the scope of the present study. 
Following Suzuki's prescription [6], we circumvent 
this difficulty by averaging a force on an obstacle, 
F( t), originating from a line tension of a vibrating 
dislocation line during a relaxation time: 

~ r? F (t) dt ~ 
1
1 

* r?- 2r (dy(t)) dt. 
1/'Y Jo 1 'Y Jo dx :r:=O 

(7) 
One can readily show that the equation (7) is re­
duced to Teff • L · b · Ym in which the product of 
the first three terms is nothing but the force ex­
erted on an obstacle by a dislocation in the static 
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Figure 1: Stress-Strain curve calculated for T = 
150K, c == 1.0%, and Se== 8.0 X w-6[m/sec.]. 
Average velocity and density of mobile disloca­
tions are also demonstrated. The other parame­
ters are tabulated in Table 1. 

equilibrium state. Hence, Ym defined as 

(8) 

where z given as (1r1) jw0 specifies the magnitude 
of the dynamic effects. The larger the deviation of 
Ym from unity is more significantly the dynamic 
effects are realized. By confining our attention to 
a point -like obstacle of which width is specified 
by d ( d < < L), the work performed by a dis­
location in eq.(6) is given as Wa = TeftLbdYm. 
Thereby, the thermal activation process is incor­
porated in the description of a vibrating disloca­
tion motion. 

The estimation of L claims a statistical prob­
lem, since the averaging process of the separa­
tion of obstacles along a dislocation critically de­
pends on the curvature of a dislocation line which 
is a function of various parameters such as the 
stress, concentration of obstacles, line tension etc. 
Friedel [7] demonstrated that, in the limit of di­
lute solid solution containing only single type of 
point obstacles, L is given as 

(9) 

where C is the concentration of the obstacle. The 
validity of the application of Friedel's statistics 
to the present case in which both dynamic ef­
fects and thermal activation process are involved 
is still open to questions. Yet, our preliminary 
analysis[8] suggests that the obtained results are 
not seriously hampered within the range of the 
employed conditions which will be demonstrated 
in the next section. 
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initial cross sectional area of a specimen 

initial length of a specimen 

stiffness of the testing system 

Schmid factor 

Burgers vector 

Boltzman constant 

Debye frequency 

strength of an obstacle 

A= 7.5x10-6[m2] 

10 = 2.0 x 10-2[m] 
K = 5.0 x 103[Pa ·m] 
!. = 0.4 
b = 2.8635 X 10-lO[m] 

mass of a dislocation per unit length 

constant specifying the multiplication rate of 

dislocations 

k = 1.3806 X 10-23 [J I K] 

vv = 4.43 x 1012[1/ sec] 
Go= 3.701 X IQ-20 [J] 
m= 2.214 X IQ-16[kg/m] 
Bm = 2.5 X I0-5 

shear modulus of a specimen 

parameter characterizing the interaction between 

dislocations 

J.L = 2.8 X 1010[Pa] 
{3 = 1.613 

damping constant 

Table 1: Parameters for the calculation 
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Figure 2: Temperature dependency of the effec­
tive stress with and without dynamic effects. 

Unlike the case of viscous motion, the rate pro­
cess of spurt - like motion is determined by the 
activation frequency, P+, at an obstacle defined 
as 

p+ = p, (10) 
tw 

where P is the number of obstacles interacting 
with mobile dislocations given as 

P=~m 
L 

(11) 

and tw is the waiting time at an obstacle which 
is related to the activation energy of eq.(6) by 

1 ( 6..G") tw = V exp - kT . (12) 

With the De bye frequency, v v, the trial frequency 
v is further expressed as v = (b/2£} vv. 
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In the spirit of Friedel statistics, the area 
swept out by a dislocation line which overcomes 
an obstacle is equivalent to the average area, 
L~ ( == b2 /C), occupied by an obstacle in a slip 
plane. Then, the microscopic strain rate, €, is 
expressed as 

(13) 

Substitution of eqs.(10)-(12) into the above equa­
tion yields 

. Nm ( 6..G*) 2 
E = L vexp - kT (Ls) b. (14) 

From the above equation, the average velocity, v, 
is deduced as 

(L
2

) (b·v ) ( 6..G*) v == i 2LD exp - k · T . (15) 

Note that, in the deduction of v, viscous na­
ture and spurt-like nature are not clearly distin­
guished, which remains to be settled in the future 
investigation. 

3. Results and Discussions 
Among various results obtained [8], we repro­

duce three major results. Listed in Table 1 
are the parameters employed in the calculations. 
The materials constants such as b, v v, m, J.L simu­
late aluminium matrix and all other parameters 
are relevant to standard testing conditions. The 
strength of an obstacle, G0 , is estimated based on 
the elastic interaction between Al and Mg. 

A typical stress-strain curve obtained in the 
present model is demonstrated in Fig. 1 together 
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Figure 3: Simulation of a stress-strain curve 
during the cyclic variation of superconducting­
normal transition. 

with v and Nm. One sees that v increases dras­
tically at the yielding and that the monotonous 
increase of Nm causes work hardening. We also 
confirmed that the deformation stress increases 
with increasing C and Se and with decreasing T. 

Shown in Fig. 2 are the temperature de­
pendances of effective stress with and without 
(Ym = 1) introducing the dynamic effects. The 
concentration of obstacles and a crosshead speed 
are fixed. The overall dependency for both cases 
indicates a typical thermal activation behavior. 
However, one notices that a single curve split into 
two curves in the low temperature region and less 
stress is required with dynamic effects. This in­
dicates that the thermal activation and dynamic 
effects are complementary each other and the loss 
of thermal activation energy can be compensated 
by the dynamic effects under a fixed strain rate. 

Various anomalies have been reported (9] in 
the cryogenic temperature region. Among them, 
most striking one is the softening and harden­
ing phenomena due to the cyclic transition be­
tween the superconducting and normal states. 
The physical origin is attributed to the phonon­
electron coupling which modifies the damping 
constant, Bd, which is further ascribed to the 
increase (normal state) and decrease (supercon­
ducting state) of the effective number of conduc­
tion electrons. We attempt to simulate this be­
havior by introducing the cyclic variation to Bd 
between 1.3 x10-5 [N · secjm2 ] for the normal 
state and one third of it for the superconducting 
state. The resultant stress-strain curve demon­
strated in Fig. 3 qualitatively reproduces the ex­
perimental tendency. The details of the relax­
ation behavior associated with the transitions will 
be reported in a forthcoming issue. 
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