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We describe the design and implementation of parallel code of tight binding recursion meth­

ods, which show perfect locality. This improvement accelerates the time-consuming routine of 
local charge neutrality, which is crucial for simulating the lattice defects. We adopted the 
library 'pvm' developed at Oak Ridge National Laboratory, because it can be installed by the 
user and supports the heterogeneous configurations of cluster machines. The calculating times 
show almost the ideal inverse dependency on the number of proccessors. 

1. INTRODUCTION 
In materials science, the demands on un­

derstanding the mechanisms from the atom­
istic levels have been boosting the improve­
ment of the atomic potentials, together with 
the knowledge of the first principles elec­
tronic structure calculations. For the realis­
tic simulations on the phase transformations 
or the relaxations of atoms around the lat­
tice defects, we need speedy atomic poten­
tials which are expected to reflect the changes 
in the electronic structure. Thus the tight 
binding approximations have recently at­
tracted the attentions of researchers[!]. 

We have been developing the program 
code 'anbop' for static relaxations around the 
lattice defects. For energy calculations, this 
code uses the tight binding recursion 
method[2], which is very fast compared with 
the conventional k-space tight binding cal­
culations. It still, however, takes much longer 
time than the empirical atomic potentials. 

In this paper, we will report the efficiency 
of our parallel code for investigating realis­
tic, and therefore huge systems. First we will 
explain tight binding formalism briefly, then 
the concept of the local charge neutrality 
(LCN}, which is crucial for simulating the lat­
tice defects. The results of the test model of 
Si 216 atoms show the expected inverse re-
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lations between CPU times and CPU numbers. 

2. TIGHT BINDING MODEL AND LOCAL 
CHARGE NEUTRALITY 

The two-center, orthogonal tight binding 
model expresses the total energy as fol­
lows[3]: 

£atom= £repulsive+ £bond+ £promotion · (1) 

The first term is the simple pairwise interac­
tion. The second term is bonding contribu­
tions of the electrons, and can be given by 

(2) 

where na(E) and Ea are the density of states 
and the self energy of the orbital a respec­
tively, and Ep is the Fermi energy. The third 
term of eq. ( 1) is the promotion energy, 

which is associated with the change of occu­
pancy of the atomic orbitals on forming the 
solid (Na) from free isolated atoms (Naatom). 

The density of states, na(E), in eq. (2) is 
the most time consuming to calculate. The 
conventional k-space tight binding performs 
it by diagonalizing the k-space Hamiltonian 
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Fig. 1 Schematic drawings of the density of states of perfect atom(left), 
and atoms around the lattice defects before local charge neutrality(LCN) 
(middle), and after LCN(right). Ne represents the number of electrons 
on the site, and No represents that of the isolated atom. 

and integrating with the complicated tetra­
hedron method. Thus it shows O(N3) rela­
tions between independent atoms and cal­
culating time. Recursion method, which uses 
Lanczos algorithm, shows excellent O(N) de­
pendency on the inequivalent atom[4]. Fur­
thermore the locality of its Hamiltonian is 
perfect. When we parallelize the calculating 
code of recursion method, thus, the overhead 
of the data transfer is conceptually none. 

For the realistic simulation, however, 
there have to achieve local charge neutrality 
for the metallic or covalent bonded sys­
tems[S]. We will see it in the model case of 
lattice defects. The band for the perfect lat­
tice is shown in left hand panel of Fig. 1 and 
contains the same number of electron in an 
isolated atom. When the atom locates next 
to the defect site, the shape of the band 
modified by the different configurations al­
ters the charge at this site. One way of local 
charge neutrality is achieved by shifting the 
self energy levels while keeping the energy 
difference constant until the total electron 
number is equal to the isolated atoms. This 
procedure needs self consistent calculations, 
because the shifting of the self energies at 
one site affects the surrounding sites. For the 
fast calculations, we parallelized this routine. 

3. ALGORITHM OF ANBOP AND ITS EFFI­
CIENCY 

Many parallel libraries on the diagonal­
ization of the matrixes have been developed, 
which are used in various programs. The 
usage of the parallelized routines does not 
make the calculation times reduced inversely 
on the CPU numbers. Because the localities 
of general matrixes are not perfect, the data 
transfers between the divided matrixes are 
necessary. As mentioned before, the tight 
binding recursion method shows perfect lo­
cality, thus it is not necessary to transfer data 
during the calculations of Hamiltonian. The 
transferring data is only about the values for 
achieving local charge neutrality. 

For handling the data transfer and the 
configurations of parallel cluster machines, 
we use PVM (parallel virtual machine) library 
developed at Oak Ridge National Labora­
tory[6]. This library can be run on the het­
erogeneous machines and installed by the 
users not by the administrators. Fig. 2 shows 
the algorithm of parallelized local charge 
neutrality routine. The left hand side shows 
the common data, and the right hand side 
the paralleled routines. We employed the 
'master-slave' configuration. The 'master' 
distributes atoms on each 'slave'. Each 'slave' 
machine gets the initial data at first, and 
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Fig.2 Algorithm and common data in the parallelized local charge 
neutrality routine of 'anbop'. 

CPU number 

Fig.3 Dependence of the calculating time on CPU numbers. The values are normalized at 
those of one CPU. Ideal shows the calculated value from that of one CPU. The model 
calculations were performed on Si 216 atoms for achieving LCN once. The machine is SGI 
PowerChallenge 10000XL (CPU/clock:R10000/190MHz x 8, Cache:32KB/1024KB, 
Memory:2048MB, OS:IRIX6.2) of Kyoto University Data Processing Center. 'Diagonalization' 
shows the measured CPU times for getting eigen values with non-orthogonal bases of 100 
Ag atoms by IBM SP2 using ScaLAPACK library[7]. 
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perform the recursion algorithm (Recur­

sion). Then they integrate DOS for getting 
the number of electrons (rnt-Ne). The rou­
tine compares the difference between the 
number of electrons on each site and that of 
an isolated atom and adjusts the self ener­
gies, to achieve local charge neutrality self­
consistently. After achieving the local charge 
neutrality on the whole system, they calcu­
late the total energies of individual atoms 
(Int-Energy). 

Figure 3 shows the measured CPU times 
on the realistic model of 216 Si atoms. The 
values are very close to those estimated from 
the one CPU time. Thus we can see the ideal 
job distribution is achieved. For the compari­
son, measuring times of k-space tight bind­
ing program are also shown in Fig. 3. This 
program uses a general library for parallel 
machines. For eight CPU, it takes almost 
double of the ideal time. Note that this pro­
gram use the non-orthogonal bases, which 
means the locality of the matrixes are much 
worse than those with the orthogonal bases. 

For the case of the cluster with cheap PCs, 
the communication among the machines 
takes more time. Even in the case, the amount 
of transferred data is designed as small as 
possible, the efficiency of parallelization is 
not so reduced. 

5. CONCLUSION 
The core routine of 'anbop' was ideally 

designed for parallelization and showed the 
almost perfect inverse relations between CPU 
times and CPU numbers. If we can obtain the 
tight binding parameters of the orthogonal 
bases describing the electronic structures of 
the system appropriately, we can simulate 
the reliable defect structures efficiently. Us­
ing higher recursion levels, the precision of 
the values obtained by the recursion method 
can approach to those obtained by the k­
space calculations. When we use the truly em­
pirical pair potentials, we can not escape 
from the ambiguity on the limit of the mod­
els. Using tight binding recursion method, 
however, we can judge it from the clear view 
points of physics. For ionic solids, the con-

straint of local charge neutrality will need to 
be relaxed for future research. For metalic 
solids, however, this program code is fast 
enough to treat huge systems for simulating 
realistic defect behavior and a convenient 
tool on the practical researches. 
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