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Abstract 

Crack propagation in a ,8-silicon nitride crystal is investigated by molecular dynamics simulations using a three­
body potential. A crack propagates when K1 is greater than 0.7 MPavm, but shrinks when K1 is smaller than 
0.65 MPavm, indicating that the Kw value is about 0.7 MPavfrrl. This value agrees well with that calculated 
using Griffith's theory. The stress distribution near the crack tip is calculated from the MD results, assuming 
that the stress is the average of the atomic stresses. The calculated stress distribution is in good agreement with 
the linear elastic solution. 
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1. Introduction 
Silicon nitride ceramics have been investigated for 

their potential application as structural materials be­
cause of their excellent mechanical properties at room 
and elevated temperatures. However, this material 
has the disadvantage of being brittle and having low 
reliability. Polycrystalline silicon nitride ceramics 
are composed of ,B-Si3N4 grains and oxynitride grain 
boundary phases. The mechanical properties of sili­
con nitride ceramics are governed by the fracture of 
Si3N 4 grains and of the grain boundary phases. Many 
studies have been carried out on fracture in polycrys­
talline silicon nitride ceramics, in which the fracture of 
the grain boundary phases is important. Few exper­
imental studies of fracture in monocrystalline ShN4 
have been reported because it is difficult to obtain 
large single crystals. In this study, MD simulations 
are performed to examine crack propagation in a ,B­
Si3N 4 crystal. 

2. Model and potential 
In this report, we use the interatomic potential (V) 

proposed by Vashishta et al. 1
), which includes both 

2-body cv;}2
)) and 3-body (Vj~~) interactions: 

(2)( ) (3)( ) V = v;j r;j + Vjik 'rij,ik (1) 

(2)( ) (3)( ) where v;j r;j and Vj;k r;j,ik are: 
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Figure 1. Schematic model of Mode I fracture. 

where: 

(4) 

The 2-body potential function consists of steric re­
pulsion, Coulomb interaction, and charge dipole in­
teraction caused by the large electronic polarizability 
of N3-. The 3-body function consists of bond bend­
ing terms to take into account the covalent nature of 
the bonds. This potential has been applied to various 
MD calculations and has given excellent results for 
the equilibrium lattice parameter, elastic constants, 
phonon density of states, and specific heat when com­
pared with the experimental data. 2

),
3) 

3. Crack Propagation of mode I 

In the MD simulation, we used a cubic cell in which 
the a and c axes of ,B-Si3N4 were placed along the x 
and z directions, respectively, as illustrated in Figure 
1. 

The basic cell contains 9408 atoms (Si:4032, 
N:5376). The atoms near the cell boundaries in the x 
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(a) Kr:=0.65 MPavm 

Figure 2. Cracks in crystals 
with different values of K 1. 

and y directions were confined within the cell, whereas 
those in the z direction were subjected to periodic 
boundary conditions. A crack of length S/2, or half 
the cell width, was inserted with the crack tip lying 
along the line x=O, y=O, i.e. the z axis. The atom 
displacements on introducing the crack were calcu­
lated using linear elastic theory assuming macroscopic 
isotropy. All the atoms were then relaxed at 100 K 
except for those within a width of s/S = 0.06 from 
the boundaries, which were held fixed. 

Figure 2 shows the MD results after relaxation for 
1.2 ps when the value of KI was varied from 0.65 to 
0.8 MPa Jill. Although the crack length decreased in 
the case of K1 = 0.65 MPa Jill, it began to grow for 
KI = 0.7 MPa Jill; the crack length increased with 
the KI value. Assuming that the smallest K1 value at 
which a crack begins to propagate is the critical stress 
intensity factor, from the MD simulations, KJbm, is 
estimated to be about 0.7 MPaJill. 

Macroscopic fracture toughness was calculated us­
ing linear-elastic fracture mechanics to compare with 
the KJbm value. The displacements for opening mode 
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Figure 3. Crack tip 
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Figure 4. Stress distributions according to 
tensile model and MD calculation. 
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where u and v are the displacements in the x and y 
directions, respectively, G is shear modulus, and K 
is bulk modulus. The Voigt model, where stress is 
constant, gives: 

K = 3 -4v 

where: 

Cmpmp 

Cm m pp 

(Cu + C22 + Caa) 
+2(023 + Ca1 + C12) 

(Cu + C22 + Caa) 
+2(044 + 055 + 066)-

(6) 

(7) 

(8) 

These equations indicate that KI is related to the 
displacement near the crack tip through macroscopic 
values, namely the elastic constants and Poisson's ra­
tio, v. Table I shows values for these constants calcu­
lated by differentiating the interatomic potential with 
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respect to strain. The ab-initio values calculated by 
Ching et al. 4l are also shown for comparison with our 
calculation. 

On they= 0 plane in Figure 3, at crack tip: 

(Jinf l(i 
,....,.. ~ ,.....,; y yu 

<Ixx - vyy - ,j2r 

When(}= 0: 

KI 
(J XX = ,f21rr ' 

Substituting (9) into (10) gives us 

K inf t--:: 
1 =uy y1ra. 

(9) 

(10) 

(11) 

Next, KIC is estimated using Griffith's energy bal­
ance: 

{2E:; 
y----;;; 

4G(1 + v)'y 
7ra 

(12) 

where 7 is fracture energy, and <Ic is the critical stress 
at which crack begins to propagate. Hence: 

KIC = 2VG(1 + v)'y. (13) 

Using the elastic constants shown in Table 1 and 7 
= 0.92 J /m2 calculated from our MD simulation, the 
Griffith theory value of KIC is calculated to be 0.89 
MPavm. This value is in good agreement with K/cm, 
but somewhat lower than the experimental KIC value, 
2 - 3 MPavm5l. The difference is possibly due to 
the microcracks or multiple cracks contained near the 
crack tip in the real material, as these should increase 
the fracture toughness. 

4. Stress near the crack tip 

The stress distribution in the simulation cell was 
calculated using the MD result of the stress at each 
atom. The total energy in the cell is given by: 

N N 

E = L V;j2l(r;j) + L Vj~~(r;j,rik) (14) 
i<j i,j<k 

and the stress in the cell is then: 

(15) 

Table I. Elastic constants of ,8-Si3N4. G, v were cal­
culated according to the Voigt model. 

3-body potential Ching et al. 4 ! 

Cu (GPa) 591 409 
C12(GPa) 182 271 
CH(GPa) 162 201 
C33(GPa) 690 604 
C44(GPa) 377 108 
G(GPa) 161 210 

V 0.33 0.27 

where: 

_! (Oua 0Uf3) 
Ea(3 - 2 <I + <I • 

UX(3 UXa 
(16) 

The energy of atom i is defined as 

1 "" (2) 1 "" (3)( ) E; = 2 ~ v;i (r;j) + 2 ~ Vj;k r;j,rik (17) 
j,k 

where: 

(18) 

The stress at atom i is defined as: 

i 1 ( oE; i i) 
<Ia(3 = v; . 0Ea(3 + m;VaV(3 (19) 

where v; is the volume of atom i defined as: 

v; _ Vo (20) ,- N 

where V0 is the equilibrium volume of the cell and N 
is the number of atoms in the cell. We then defined 
the stress in the cell as the average of u~f3 over all i, 
Uaf3· 

The stress distribution in the cell was calculated 
using O'af3· First, ,8-Si3N4 without a crack was loaded 
with a tensile stress in the y direction to investigate 
the validity of using O'af3. Figure 4 shows the stress 
on each atom, O'af3 (un), and the stress calculated 
using elastic constants. Although the atomic stresses 
are scattered, the average value is almost constant, 
in good agreement with the calculation using elastic 
constants, suggesting that calculating the stress distri­
bution from the MD results is a valid method. Next, 
the stress distributions for models containing a crack 
were calculated. Figure 5 shows the uu, u12, and un 
values near the crack tip. The MD values are in good 
agreement with the results of linear elastic analysis 
except for near the crack tip. 

5. Conclusion 
MD simulations of single crystals of ,8-Si3N4 reveal 

that a crack propagates, when K1 ~ 0.7 MPavm, in 
good agreement with the value calculated on the lin­
ear elastic condition. Stress near the crack tip, assum­
ing that the stress is the average of the atomic stress, 
is also in good agreement with the linear elastic solu­
tion. These results indicate that our MD simulation 
describes the fracture behavior of ,8-Si3N4 well. 
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Figure 5. Stress distribution near the crack tip 
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