Transactions of the Materials Research Society of Japan 24 [3] 421-424 (1999)

Preparation and Characterization of Metallic Oxides Using Photoelectrochemical Deposition

Masayuki Noguchi, Michio Koinuma and Yasumichi Matsumoto Department of Applied Chemistry, Faculty of Engineering, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555, Japan Fax: 81-96-342-3659, e-mail: 970t9227@eng3.stud.kumamoto-u.ac.jp

The deposition of lead dioxide onto the single crystal and polycrystalline TiO_2 , electrodes using the photoelectrochemical epitaxial growth (PEEG) and electroless oxidation technique was carried out, and the electrochemical behavior of the prepared PbO₂/TiO₂, electrode was studied. The crystal orientation of the deposited oxides strongly depended on the crystal misfit between the oxides and the TiO₂, substrate. The AFM images showed that the crystal growth of deposited Pb0= was affected by the current density and the temperature. From the measurements of the current-potential curve of the PbO₂/TiO₂, electrode, it was found that the PbO₂, deposited on the polycrystalline TiO₂, produces a surface state leading to a large anode tunneling current. Therefore the present PbO₂/polycrystalline TiO₂, electrode was very useful as an inert anode.

Key words: titanium dioxide, photoelectrochemistry, lead dioxide, electroless

1. INTRODUCTION

It is well known that PbO₂, is very useful as an inert anode in acidic solution¹⁻⁴. Sometimes, these electrodes act as an anode for the generation of ozone because of the high overvoltage for the oxygen evolution reaction. PbO₂/Ti electrodes where α - and β -PbO₂, are anodically deposited on a Ti plate in the solution containing Pb²⁺ are very important in practical use. In this case, the TiO₂, film formed on the Ti plate must be released or some conducting mixed oxides must be coated on the Ti substrate before the PbO₂, electrodeposition, because the TiOx oxide produced on the Ti substrate under the anodic bias behaves as an insulator and disturbs the electrodeposition of PbO₂¹.

deposition of PbO₂, The onto the TiO₂, if semiconductor is possible we use the photoelectrochemical epitaxial growth (PEEG) or electroless oxidation technique. In the PEEG, the photoproduced OH radical on the illuminated electrode surface significantly contributes to the deposition of the metallic oxide5-6. On the other hand, some metal oxide films such as PbO₂⁷, MnO₂⁸, and Ti₂O₃⁸ have been electrolessly deposited on glass in solutions containing o metal cations, where they are oxidized in heterogeneous reactions by an oxidizing agent, peroxydisulfate. In both cases, metal oxide films will be formed by similar electrochemical reactions to those in anodic oxidation. These processes will be very available for the preparation of the metallic oxide film, compared with other methods such as CVD and spattering, since the film can be prepared easily using a simple apparatus and under simple conditions. Moreover, the prepared PbO₂ coated TiO₂ (PbO₂/TiO₂) electrode may be useful as an inert anode material in acidic solution, because a large tunneling current flows via the PbO₂ crystal formed at the surface under anodic bias.

In this paper, the preparation of PbO_2 on the single and polycrystalline TiO_2 electrode by PEEG was investigated and the electrochemical behavior of the prepared PbO_2/TiO , was measured. In comparing, the preparation and characterization of the PbO_2 by electroless oxidation was also investigated. o

2. EXPERIMENTAL

The polycrystalline TiO_2 used as a working electrode was prepared from titanium plate. After washing with acetone, the specimen was heated in air at 400 or 650'C for 3hr. The geometric area exposed to the electrolyte was reduced to 1 cm² on one side by epoxy resin to mask off the remainder of the electrode. The surfaces of TiO₂ single crystals with rutile type structure were used the (100) and (001) planes. The TiO₂ single crystal was reduced in H₂ at 800°C so as to increase conduction. Indium was deposited on the back side of TiO₂ for purpose of ohmic contact.

 PbO_2 was photoelectrochemically deposited onto the single and polycrystalline TiO_2 surface under a constant current density for 30 min under illumination of a 500W ultra high-pressure mercury lamp. Pt and Hg/Hg₂SO₄ were used as the counter and reference electrodes, respectively. 0.1 M Pb(NO₃)₂ was used as the electrolyte.

Electroless deposition of PbO₂ on TiO₂ substrate from a solution containing Pb²⁺ and an oxidizing agent was also investigated to compare the photoelectrochemical technique. The substrate was immersed in a vertical position into a mixed solution of Pb(NO₃)₂ and (NH₄)₂S₂O₈. CH₃COONH₄ were added to the solution as supporting electrolyte. The pH of the solution was adjusted to 6 by HNO₃ titration. After an induction time of several hours, the solution gradually turned brown. and after 12 hours a compact and continuous oxide film was precipitated on the substrate.

The deposited oxide films prepared on TiO₂ were washed in distilled water, followed by drying at room temperature. The structures of the oxide films were examined by X-ray diffraction analysis (XRD) using monochromatic CuK α radiation. Morphological observations of the oxide films were carried out with an atomic force microscope (AFM). The electrochemical behavior of the PbO₂/TiO₂ electrodes was obtained in H₂SO₄.

3. RESULTS AND DISCUSSION

Figure 1 shows XRD patterns of the PbO₂ photoelectrochemcally deposited onto the various TiO₂ electrode in O. IM Pb(N0₃)₂ with pH=1 at 50 µA/cm² under illumination. No deposition occurred in darkness. 1M Pb(N0₃)₂ solution was adjusted to pH= I by HN0₃ titration, since the solution of 0.1 M Pb(N0₃)₂ was primarily pH=4. The product mainly consisted of a polycrystalline β -PbO₂ in low pH, but that a large amount of polycrystalline α -PbO₂ was also deposited at relatively high pH. This result is quite similar to the case for the deposition of the PbO₂ onto the metal electrode⁹. In this figure, the same crystal orientation (100) and (001) was observed for the β -PbO₂ because of the same rutile structure. The result indicates that the orientation of deposited B-PbO2 was strongly dependent on the crystal structure of the TiO₂ substrate surface.

On the other hand, figure 2 shows XRD patterns of the PbO_2 onto the various TiO_2 electrode by electroless oxidation technique. The following electroless deposition occured for the PbO2 deposition.

$$Pb^{2+}+2H_2O \rightarrow PbO_2+4H^++2e^-$$
 [1]
 $S_2O_8^{2+}+2e^- \rightarrow 2SO_4^{-2-}$ [2]

The same crystal orientation (100) and (001) was also observed for the β -PbO₂. In the short deposition time, α -PbO₂ was observed with β -PbO₂, but β -PbO₂ only grew as the deposition advanced. Therefore, in the short deposition time the growth of electroless deposited b-PbO₂ is not only due to the mismatch but also due to other factors, such as change of the pH.

Figure 3 shows the AFM images of PbO₂ deposited on the single crystal TiO_2 by photoelectrochemical technique. In room temperature (A), PbO₂ was deposited

Figure 1. XRD patterns of the PbO₂ on the polycrystalline TiO₂ (A), single crystal TiO₂ (100) (B) and (001) (C) electrode by photoelectrochemical technique.

Figure 2. XRD patterns of the PbO₂ on the polycrystalline TiO₂ (A), single crystal TiO₂ (100) (B) and (001) (C) electrode by electroless technique.

Figure 3. AFM images of the PbO₂ deposited on the single crystal TiO_2 at room temperature (A) and $80^{\circ}C$ (B) by photoelectrochemical technique.

uniformly and the grain size was about 0.1-0.5 μ m. The roughness of electrode surface and the grain size were increased with temperature under the photoelectrochemical deposition. On the other hand, a large island-like crystal growth was observed for PbO₂ on the polycrystalline TiO₂ in Figure 4. Moreover, the crystal shape was influenced by the current density. At low current density, the small crystal grew uniformly in Fig. 4(C). Therefore, in the PEEG technique, we can control the crystal shape of the deposited PbO₂ by the current density and the temperature.

The electroless deposited PbO₂ onto the TiO₂ (100) single crystal was distributed uniformly as small clusters as shown in Fig.5-(A). The grain size of the deposited PbO₂ film for 3 hours was about 0.1-0.3 μ m, where the deposited film was determined to be mixed phases of α - and β -PbO₂ by X-ray analysis. The grain size increased together with the increase of the deposition time (Fig.5-(B)), where only the β -PbO₂ phase grew. In the electroless technique, control the crystal shape was difficult compared with the photoelectrochemical deposition, but the crystal growth with large size of the deposited PbO₂ was more advanced.

Figure 6 shows the current-potential curves of PbO₂/single crystal TiO₂ (A) and PbO₂/polycrystalline TiO₂ (B) where the PbO₂ was photoelectrochemically deposited at 500 μ A/cm² for 30 min. The deposited PbO₂ completely covered the surface of the TiO₂ based on an EPMA measurement. No photocurrent was

observed for either of the electrodes because the PbO₂ completely interrupts the illumination onto the TiO₂ surface. Dark current was scarcely observed under the anodic bias, while the cathodic current due to the PbO₂ reduction was observed in the potential region more negative than about the flatband potential for single crystal TiO₂ as shown in Fig. 6 (A). The fiatband potential of the single crystal TiO₂ electrode was about -800 mV (vs. Hg/Hg₂SO₄) according to the M-S plot measurement. On the other hand, a large dark tunneling current due to the oxygen evolution reaction was observed under the anodic bias, and a cathodic current due to the reduction from PbO2 to PbSO4 was observed in the potential region more negative than the equilibrium potential of PbO₂/PbSO₄ E(PbO₂/PbSO₄) at the β -PbO₂/polycrystalline TiO₂ electrode, as shown in Fig. 6 (B). The electrochemical behavior of the present PbO₂/polycrystalline TiO₂ electrode is guite similar to the case of the general metal electrode.

Figure 6 (C) shows the current-potential curves of the PbO₂/polycrystalline TiO_2 , where the PbO₂, was electroless deposited for 12 hours. This electrode is also the same behavior as the photoelectrochemically deposited PbO₂/TiO₂ electrode.

The result indicates that no surface state bringing about the dark tunneling current under anodic bias in the present potential region exists at the interface of the single crystal TiO₂. Under a cathodic bias, a large cathodic current due to the reduction of PbO₂ flows

Figure 4. AFM images of the PbO₂ deposited on the polycrystalline TiO₂ at 500μ A/cm² (A) and 50μ A/cm² (B) by photoelectrochemical technique.

Figure 5. AFM images of the PbO₂ deposited on the single crystal TiO₂ by electroless oxidation. Deposition time for 3hour (A) and 40hour (B).

Figure 6. Current-potential curves of the photoelectrochemical deposited PbO₂ on the single crystal TiO₂ (A) , polycrystalline TiO₂ (B) , and electroless deposited PbO₂ on polycrystalline TiO₂ (C) in 0.5M H₂SO₄.

because schottky barrier scarcely forms at the PbO_2/TiO_2 interface in the potential region more negative than the flatband potential.

On the other hand, Fermi level pinning occured at the PbO_2 /polycrystalline TiO_2 , interface where a surface state has a large electron density. This surface state consists of Ti-Pb-O which is formed at the crystal edges

or grain boundaries or some defects at the polycrystalline TiO_2 , in the interface, because no o dark tunneling current was observed for the PbO₂/single crystal TiO_2 . Therefore the prepared PbO₂, on the polycrystalline TiO_2 , electrode by photoeletrochemical technique may be useful as an inert anode material in acidic solution.

ACKNOWLEDGMENT

The present work was supported by the RFTF Program in the Japan Society for the Promotion of Science (JSPS-RFTF96R06901) and a Grant-in Aid for Scientific Research (No.09650909) from The Ministry of Education, Science, Sports and Culture.

REFERENCES

- A. Watanabe, M. Ueda, T. Shimamune, M. Sekimoto, T. Kameyama and K. Fukuda, *DENKI* KAGAKU, 57, 139-144 (1989).
- P. C. Foller and C, W. Tobias, J. Electrochem. Soc., 129, 506-515 (1982).
- D. Gilroy, J. Appl. Electrochem., 12, 171-183 (1982).
- 4. C. Comninellis and E. Plattner, J. Appl. Electrochem., 12, 399-404 (1982)
- 5. Y, Matsumoto, M. Fujisue and J. Hombo, J. Electroanal. Chem., **314**, 323-329 (1991).
- Y. Matsumoto, M. Fujisue, T. Sasaki and J. Hombo, J. Electroanal. Chem, 369, 251-254 (1994).
- 7. W. Mindt, J. Electrochem. Soc., 117, 615-618 (1970).
- 8. W. Mindt, J. Electrochem. Soc., 118, 93-95 (1971).
- 9. T. Sakaue and N. Koura, *DENKI KAGAKU*, **65**, 138-142 (1997).

(Received December 11, 1998; accepted March 18, 1999)