Reaction Process of Mechanochemically Assisted Synthesis of Barium Titanate Powders

Osami Abe, Quang Khieu Dinh and Dai-suke Itoh Department of Materials Science, Faculty of Engineering, Ibaraki University 4-12-1 Nakanarusawa, Hitachi 316-8511 Japan Fax: 81-294-5078, e-mail: abe@hcs.ibaraki.ac.jp

Reaction mechanism for the synthesis of barium titanate from TiO₂ and Ba(OH)₂·8H₂O under grinding has been estimated by a conventional fitting method to kinetic functions. The formation of BaTiO₃ progressed through a boundary-reaction controlled interface contracting kinetics, while amorphization of TiO₂, which takes place previously to the formation of titanate, indicates varied reaction indices depending on the grinding stress and the progress in reactions. At low grinding stresses, the stressinduced amorphization at the early stage grinding is successively replaced by the reaction-controlled one. The later process suggests the amorphization promoted by kneading the constituents in microagglomerates functioning as micro-reaction fields. Over a threshold grinding stress, the reaction index shows a contraction kinetics assuming a gradually decreasing crystallinity from the crystalline core to the amorphous surface inside TiO₂ particles. These observations agree with the previously proposed mechanism, where the surface acid generated on the hydrated TiO₂ particles with a certain progress in amorphization reacts with Ba(OH)₂·H₂O formed by a partial dehydration of Ba(OH)₂·8H₂O in the agglomerates.

key words: barium titanate, planetary mill, mechanochemistry, reaction mechanism

1. INTRODUCTION

Recently available high-energy grinding equipments enable the application of mechanochemical reactions to syntheses of ceramic powders¹⁻⁷⁾. The authors have demonstrated its application to the preparation of titanate (MTiO3, M: Ba, Sr, Ca)³⁻⁵⁾ and hexaferrite $(BaFe_{12}O_{19})^{6,7}$ powders. In the previous work using a planetary ball mill, the high shear stress and highfrequency swaying motion of grinding media induce (1) size reduction and surface modification of primary particles, (2) agglomeration by inverse grinding due to the increased polarity of the modified surface, (3) size reduction of the agglomerates, and (4) complete mixing of the constituents inside the agglomerates. Controlled inverse grinding generates agglomerates functioning as "reaction fields" with controlled size and morphology to lead reduced calcination temperatures, the controlled morphology of synthesized powders, and the resulting microstructural control of sintered materials.4, 6, 7).

The fine grinding of the starting powders and the suitable surface modification induce chemical reactions during grinding. Planetary milling of TiO_2 and alkaline-earth hydroxides (M(OH) $_2 \cdot 8H_2O$, M: Ba, Sr) in acetone is one of the examples for this "mechanochemical reactions", where sinterable BaTiO3 powders can be synthesized directly by the grinding operation. Acid-base reactions between acid sites on TiO₂ and Ba (OH) $_2$ ·H₂O inside their co-agglomerates $(\langle 1 \, \mu m \rangle)$ is proposed for the reaction process^{4, 6}. The co-agglomerates functioning as "micro-reaction fields" are provided by the increased surface polarity of TiO2 hydrated by the dissociated water from Ba(OH)2. 8H2O in the less hydrophilic organic dispersant. The hydrated water is converted into Brønstead acid site under the kneading process of the co-agglomerates. However, few studies on the reaction mechanisms and kinetics have been conducted. In the present work, reaction mechanism and kinetics of the mechanochemical synthesis of BaTiO₃ has been studied by a conventional fitting method to kinetic functions.

2. EXPERIMENTAL

The starting TiO₂ powder was prepared by a heattreatment of TiO(OH)₂ derived from Ti(C₃H₇O)₄ at 450°C. This powder had anatase phase with the specific surface area, $91.9 \text{ m}^2 \cdot \text{g}^{-1}$. Reagent-grade Ba(OH)₂. 8H₂O (Wako Pure Chem.) was mortar-ground to 100 mesh in a glove chamber filled with a dry N₂ gas. A stoichiometric mixture of these materials (10g) was encapsulated into a silicon nitride vessel (480 cm³) with acetone and grinding media (ϕ 3 silicon nitride balls) for grinding operation using a planetary ball mill (Kurimoto-Tekko-Sho). The grinding conditions are summarized in Table I. The ground powders were filtered through a 0.2 µm Teflon membrane, washed by acetone, and dried under vacuum at 150°C.

The reaction products were identified by X-ray diffractometry (XRD) with CuK α radiation. The phase contents were determined from the integrated peak intensities of the overlapped (101) and (110) reflections for BaTiO₃ and the (101) reflection for TiO₂ as the ratio to the completely crystallized BaTiO₃ powder and anatase in the starting mixture. The reaction mechanism was estimated upon the indices in the kinetic plots proposed by Hancock and Sharp⁸. The specific surface area (SSA) was determined by a N₂ adsorption BET method. The morphology of the ground powders was observed by SEM.

Table I Grinding conditions of the mixtures

revolution frequency	acceleration / $m \cdot s^{-2}$		
/ Hz	max.	min.	
3.00	118.0	9.9	
4.00	209.7	17.7	
5.00	327.7	27.6	
Grinding time:	(10), 30, 60,	180, 360 min	
Fractional filling of th	ne grinding me	dia: 0.40	

Fractional	filling	of the	startir	ng slurry	
	to	the va	cancy	of media:	1.00

RESULTS AND DISCUSSION Formation of BaTiO₃ and amorphization of TiO₂ under grinding

Figure 1 shows the X-ray diffraction profiles of the ground products. The starting Ba (OH) 2.8H2O was immediately dehydrated to Ba(OH)2.3H2O and Ba (OH) 2. H2O. As described previously^{4, 6)}, the dissolved water hydrates the TiO2 particles to induce inverse grinding providing agglomerates. The SSA of the ground products in Table II was reduced with the progress in grinding. However, the size of agglomerates observed in Fig. 2 was quite small; 0.2-0.8 µm after grinding for 360 min at 4 Hz. The fibrous particles observed in Fig. 2 were Ba (OH) 2 · H2O formed by recrystallization during vacuum drying at 150°C. This high drying temperature was adopted so as to identify the intermediates by XRD. The ground powders dried at 70°C did not show the fibrous particles. Large rod-like Ba (OH) 2 · H2O particles observed at the early stage grinding (30 and 60 min) changed to smaller ones after grinding for 180 min due to the reduced amount of Ba (OH) 2. H2O. After grinding for 360 min, no fibrous particles were observed and almost single phase BaTiO3 was synthesized at 4 Hz. Rod-like Ba (OH) 2. H2O particles remained after grinding for 360 min at 3Hz but disappeared for 180 min at 5Hz.

Figure 3 shows the phase content obtained from the XRD intensities as a function of grinding time. The formation of BaTiO₃ and the amorphization of TiO₂ progressed after induction periods due to the deflocculation of the starting TiO₂ aggregated during the calcination. The higher revolution frequency resulted in the shorter induction period. The formation of BaTiO₃ was promoted by the increase in revolution frequency, that is, the increased grinding stress. The 56.5% conversion of TiO₂ into BaTiO₃ at 3Hz (360 min) increased to 83.3% at 4Hz, and 96.5% at 5Hz, where the synthesizing reaction had almost completed.

In contrast to the uniquely progressing $BaTiO_3$ formation, the amorphization of anatase- TiO_2 showed two step processes of the rapid reduction of crystalline TiO_2 at the early stage within 30-60 min and the

Table II Specific surface area (m²·g⁻¹) of ground products

revolution frequency	grinding time / min			
/ Hz	30	60	180	360
3.00			16.3	13.8
4.00	19.4	18.8	16.1	11.4
5.00			12.5	11.5

Fig. 2 Morphology of ground powders at 4Hz.

following gradual amorphization. The transition grinding time between these two processes became shorter at the higher revolution frequency. At the lowest grinding stress examined (3Hz), the amorphization once terminated at 180 min and then progressed gradually at 360 min. The formation process of BaTiO₃ and the amorphization progressed congruously at the later stage of grinding at 3Hz.

The amorphization of TiO₂ was promoted by the coexistence of barium hydroxide as presented in Fig. 3, where the amorphization without Ba(OH)₂·8H₂O (line **a** at 4Hz) was not attained to those for the mixinggrinding process below 180 min. The amorphization of TiO₂ without Ba(OH)₂·8H₂O takes place through the kneading process of the agglomerates consisting of nano-crystalline TiO₂ adhered by the titania-sol (TiO₂· xH₂O) after a certain amorphization accompanied by

Fig. 3 Phase content of ground products.

Line **a** (\diamondsuit) shows the amorphization of TiO₂ without coexistence of Ba (OH) 2 · 8H₂O.

CC 11 TTT	B		1			8
Lanie III	Reaction	mechanism	and	suggested	index	m
	rououon	THE CHARMONN	G M M M	JUEEUJUU	maca.	116

Boundary-reaction-controlled contracting mechanism				
three dimensional	1.07			
two dimensional	1.11			
Nucleation growth mechanism				
three dimensional	3.00			
two dimensional	2.00			
Diffusion-controlled contracting mechanism				
three dimensional	0.54			
two dimensional	0.57			

palverization^{9, 10)}. The termination and the congruent amorphization observed at 3Hz strongly indicated the immediate consumption of acidic titania-sol by the formation reaction of BaTiO₃ at the later stage of grinding. This consumption of titania-sol contributing agglomeration suggests the formation kinetics of BaTiO₃ controlled by the amorphization rate and a threshold grinding stress to form excess titania-sol (and amorphous TiO₂) for the BaTiO₃ formation *via* the acid-base kinetics.

3.2 Formation kinetics of BaTiO₃

The formation mechanism of BaTiO₃ was estimated from the reaction index, m, obtained by fitting the concentration data into the following function⁸:

 $\ln \left[-\ln(1 - \alpha) \right] = m \cdot \ln t_{c}$ (1)

where α was the BaTiO₃ content and t_c was the grinding time after the correction on the time required to the deflocculation. The gradient, *m*, in Eq.(1) showed the reaction index suggesting the reaction mechanisms listed in Table III.

The obtained $\ln[-\ln(1-\alpha)]$ versus $\ln t_c$ plots, Hankock-Sharp plots, is shown in Fig. 4. The boundaryreaction-controlled contracting mechanism was estimated from the gradient 1.05-1.07 for the plots at 4Hz and 5Hz. This mechanism agreed with "unreacted core model" for gas-solid and liquid-solid reactions. The swift removal of the synthesized BaTiO₃ from the contact zone of the reactants could be easily assumed for the reactions under grinding. This should provide the reaction according to unreacted core model.

Fig. 4 Hankock-Sharp plots to estimate the formation mechanism of BaTiO₃.

Fig. 5 Fitting of the concentration of BaTiO₃ to kinetics for unreacted core model.

However, the gradient, 0.98, for the reaction at 3 Hz meant the deviation from the unreacted core model. This deviation should be caused by the transition of the reaction mechanism from the boundary-reaction-controlled process to amorphization-rate-controlled process, because the formation of BaTiO₃ progressed congruously with the amorphization of TiO₂ at the later grinding stage (>180 min) and the gradient for reaction at the early grinding stage (<180 min) increased to close 1.07.

The kinetic constant, k, was obtained according to Eq. (2) for the unreacted core model.

$$1 - (1 - \alpha)^{1/3} = k \cdot t_c$$
 (2)

The kinetic plots shown in Fig. 5 indicated almost linear relations for 4 and 5Hz. However, the deviation for 3Hz suggested a threshold grinding stress for the boundary-reaction-controlled process. To certify the threshold grinding stress, the left term in Eq. (2) was plotted against the number of swaying motion, n_c , that was the product of rotation frequency and grinding time. As shown in Fig. 6, the relation between $1 - (1 - \alpha)^{1/3}$ and n_c indicated one linear relation for 4Hz and

5Hz and for the early stage grinding at 3Hz. This relation, irrespective of the grinding stress, meant the quite small threshold stress for the acid-base reactions of the hydrated TiO2 with barium hydroxide when enough (excess) amounts of acidic site on TiO₂ could be provided. However, at 3Hz, the plots negatively deviated from the linear relation at the later grinding stage for the congruously progressing amorphization and formation reaction of BaTiO₃ at 180 and 360 min. It was considered that a threshold grinding stress between 3 and 4Hz was required to satisfy the excess concentration of the acidic sites beyond the consumption rate of them by the formation reaction of BaTiO₃. The agglomeration providing "reaction field" for the contracting mechanism would also be degraded by the reduced concentration of the acidic sites having high polarity.

3.3 Amorphization kinetics of TiO₂

The amorphization mechanism and kinetics influencing the formation reaction of BaTiO₃ was estimated from the gradient in Eq. (1) using the content of remained anatase-TiO₂, β , instead of 1 - α . The obtained fitting plots are presented in Fig. 7. The gradient for the mixing-grinding process at 5 Hz agreed with the index supposed for diffusion-controlled contracting reaction mechanism. It is difficult to assume the diffusion-induced amorphization, but this kinetics can be recognized by assuming the gradient of crystallinity from the crystalline core to amorphous surface inside the TiO₂ particles. Although the error function on diffusion processes can not be applied to this crystallinity-gradient theoretically, it would provide an approximately linear relation within the accuracy in Fig. 7.

The plot for the amorphization of TiO_2 without coexistence of Ba (OH) $_2 \cdot 8H_2O$ also indicated a linear relation. But, the gradient, 0.845, did not agree with the reaction indices listed in Table III as well as those for the other possible mechanisms; ordered reactions and branching reactions. The intermediate value of the gradient between the indices suggesting the reactioncontrolled and "diffusion-controlled" mechanisms would indicate one of the possibilities in the combination of concurrently progressing amorphization

Fig. 7 Hancock-Sharp plots to estimate the amorphization mechanism of TiO₂.

and acid-base reaction with the gradual change in rate-determining process, gradual transition of the amorphization mechanism, or the gradual change in the crystallinity profile inside the particles.

The Hancock-Sharp plot for 3Hz and 4Hz initially showed the gradients similar to that for 5Hz, but the reduction of the amorphization rate caused the negative deviation of the plots at 60-180 min, and the gradients increased again by the prolonged grinding (>180 min). The negative deviation was not marked for 4 Hz, but the gradient evidently increased at 360 min. The increment of the gradients at the later stage grinding suggested the progress in amorphization accompanying to the consumption of acidic sites by the formation reaction of BaTiO₃. The gradient for the later stage (> 180min) for 3Hz and 4Hz was higher than 0.57 for 5Hz, supposing the congruent progress in the amorphization and the formation reaction. Under the grinding stresses over a threshold one corresponding to about 4Hz for the grinding conditions listed in Table I, the amorphization providing enough amounts of acid site on ground TiO₂ particles in agglomerates should result in the boundary-reaction-controlled kinetics.

4. CONCLUSION

Reaction mechanism for the synthesis of BaTiO3 from TiO2 and Ba(OH)2.8H2O under grinding has been studied by a conventional kinetic analysis. A boundaryreaction-controlled interface contracting kinetics and a contraction kinetics with a crystallinity gradient inside TiO₂ particles are proposed for the formation of BaTiO₃ and amorphization of TiO2, respectively. At low grinding stresses, the stress-induced amorphization at the early stage grinding is successively replaced by the reactioncontrolled one. The reaction index for the later process suggests the congruent progress in amorphization and formation of BaTiO3 under kneading the constituents in micro-agglomerates functioning as micro-reaction fields. Over a threshold grinding stress, the amorphization providing enough amounts of acid site on ground TiO2 results in the boundary-reaction-controlled formation of BaTiO₃.

References

- 1) T. Senna, Metals & Technology, **69**, 1047-1056 (1999).
- G. Mi, F. Saito, S. Suzuki, and Y. Waseda, *Powder Technol.*, 97, 178-182 (1998).
- O. Abe and Y. Suzuki, Mater. Sci. Forum, 225-227, 563-568 (1996).
- 4) O. Abe and Y. Suzuki, J. Soc. Powder Tecnol. Japan, 31, 176-181 (1994).
- 5) O. Abe, Proc. World Congress on Particle Technol. 3, Brigton (UK), 367 (1998).
- 6) M. Narita, O. Abe, and F. Ikazaki, J. Soc. Powder Tecnol. Japan, **32**, 634-638 (1995).
- 7) O. Abe, Solid State Ionics, 101-103, 103-109, (1997).
- J. D. Hancock and J. H. Sharp, J. Am. Ceram. Soc., 55, 74 (1972).
- 9) Y. Suzuki and O. Abe, J. Soc. Powder Technol. Japan, **32**, 639-643 (1995).
- 10) O. Abe, Metals & Techonol., **69**, 1057-1065, (1999).

(Received December 17,1999; Accepted February 15,2000)