Preparation of Self-Assembly Monolayer by C60 Derivatives

H. Furusawa ${ }^{1}$, K. Sakaguchi ${ }^{1}$, T. Shimizu ${ }^{1}$, T. Watanabe ${ }^{1}$
H. Yamamoto ${ }^{1}$, M. Chikamatsu ${ }^{2}$ and K. Kikuchi ${ }^{2}$
${ }^{1}$ College of Science and Technology, Nihon University Narashinodai, Funabashi-shi, Chiba 274-8501, Japan
${ }^{2}$ Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-03, Japan
Fax: +81-47-467-9683
E-mail : hyama@ecs.cst.nihon-u.ac.jp

A self-assembly monolayer (SAM) of C60 derivatives with alkanethiol at the end of long alkyl chain was tried to be prepared. Substrates used were Au (111) films on organic resin sheets. The covering ratio of C_{60} derivatives which was evaluated from the results of the XPS peak intensity for C-C bond energy was saturated in the specimens soaked for about 15 hr in a 0.01 mM benzene solution of C_{60} derivatives at room temperature. The microstructures observed by AFM or TEM revealed that ultrathin films exactly covered on Au substrates.

Key words: C60 derivatives, self-assembly monolayer, covering ratio , TEM

1. Introduction

Since the discovery of $\mathrm{C}_{60}{ }^{1}$) and the development of mass production of Fullerenes ${ }^{22}$, they have been widely studied in the field of materials science because of great interests in its fascinating physical and chemical properties. We have been studying about a new type of electronic devices in which conductivity among C_{60} molecules are controlled by switching polymerization reactions. For such a study ultrathin or monolayered C_{60} films are essential. Recently Shi et al. ${ }^{3}$) reported a noble wet-process, selfassembly monolayer (SAM) for a preparation of a C_{60} derivatives monolayer. They used C_{60} derivatives with alkanethiol at the end of long alkyl chain.

We tried to prepare the SAM of almost similar C_{60} derivatives by following Shi's process. Figure 1 shows a schematic molecular structure of a C_{60} derivatives used in this work. Structures of the obtained SAM were evaluated by X-ray photoelectron spectroscopy (XPS), Atomic

Force Microscopy (AFM) and/or Transmission Electron Microscopy (TEM).

2. Experimental

2.1 Preparation process of SAM

A schematic self-adsorption process on Au substrates by C_{60} derivatives is showed in Fig. 1. The length of C_{60} derivatives is calculated to be 2.2 nm by space-filling model. C60 derivatives form a stable monolayer by the interaction between Au -S and by van der Waals' force among alkyl chains. According to the previous report${ }^{3}$, Coo derivatives form SAM to have the nearest neighbor distance of about 1 nm on Au substrates.

The equipment used is shown in Fig. 2. Au (111) films on organic resin sheets (Auro Sheet: Tanaka Kikinzoku Kogyou Co.) were used as a substrate. The Au substrates were soaked in a 0.01 mM benzene solution of C60 derivatives for $2-48 \mathrm{hr}$ at room temperature. After

Fig . 1 Molecular structure of C_{60} derivative and schematic self - assembly monolayer.
the soaking non-adsorbed C_{60} derivatives were washed out by benzene and the specimen was dried by N_{2}.

2.2 Synthesis of C60 derivatives

The C6o derivatives with a long alkyl chain were synthesized by the similar method as the previous report ${ }^{33}$. Figure 3 shows a schematic process of synthesis reactions. The samples were purified by the HPLC with Buckyprep column (Nacalai Tesque Co.) and toluene as an eluent, and characterized by FAB-MS and $\mathrm{H}-\mathrm{NMR}$ spectroscopy.

Figure 4 shows an optical absorption spectrum of 0.01 mM benzene solution of C_{60} derivatives and 0.01 mM benzene solution of pure C_{60}. The λ max of C_{60} derivatives in benzene solution revealed red-shifts comparing with that of C_{60}.

3. Results and Discussion

3.1 Analysis by XPS

Figure 5 (a) shows the depth profile of $\mathrm{C}_{1 \text { s }}$ peak intensity in the SAM by soaking for about 42 hr . The XPS peak intensity for $\mathrm{C}-\mathrm{C}$ bond energy of 285 eV in etching
time from 0.00 min to 0.03 min represents carbons adsorbed on surfaces. After more etching the bond energy shifts to lower than 285 eV , that of C 60 . This result means the existence of C_{60} molecules on substrates.

The covering ratio of C_{60} derivatives was evaluated from the result of the intensity of the $\mathrm{C}_{1 \text { s }}$ peak of SAM comparing with that of an evaporated C_{60} thin film. As shown in Fig. 5 (b) the value of the covering ratio increased as increasing the soaking time until about 10 hr and almost saturated at about 15 hr soaking. The result means that absorbing reactions saturated by a self-assembly mechanism.

3.2 Observation of specimen surfaces by AFM

Figure 6 (a) and (b) shows AFM image of Au film surfaces and SAM surfaces, respectively. The undulation of Au surfaces were $2-6 \mathrm{~nm}$, while the undulation of the SAM was comparatively small to be about 3 nm . The remarkable change of the surface conditions was observed. The drastic change of topographic properties on the SAM surfaces may result in effectively smooth surfaces by the

Fig. 2 Schematic equipment for a SAM preparation.

Fig. 4 Optical absorption spectrum of C60 derivatives and pure C_{60} in 0.01 mM benzene solution.

Fig . 3 Schematic process of synthesis reactions of C60 derivatives.

(a) Substrates [Au (111)]

(b) Specimen film soaked for 15 hr

Fig. 6 AFM images of surfaces and line profiles of undulation.

AFM observation. Since the full length of the C_{60} derivatives is a few nm , the surfaces also may become more smooth by derivatives adsorptions.

3.3 Observation of SAM on Au by TEM

As a substrate an ultrathin Au film was deposited by sputtering on collodion meshes for TEM observations.

Figure 7 (a) shows TEM photographs of the SAM by soaking for 15 hr . Islands of Au with the size of about 3 nm were observed. It was noticed that interference fringes like a moire pattern appeared on some Au islands. The observed interval of fringes was about 0.25 nm . When a lattice distance of C_{60} derivatives is almost integral multiples of that of Au , the interval of the moire fringes is

Fig. 7 TEM photographs.
considered Au lattice distance, 0.25 nm . For the comparison TEM photographs of non-soaked substrate are shown in Fig. 7 (b), only Au islands were observed without any interference fringes.

These results of TEM observations indicate that some kinds of ultrathin films exactly covered on Au substrates.

4. Conclusion

The SAM of Coo derivatives was prepared and its structures were studied. The covering ratio of C_{60} derivatives was evaluated from the $\mathrm{C}_{1 s}$ XPS peak intensity and the ratio was saturated in the specimens soaked for about 15 hr . The surface undulations of the AFM images were changed after the SAM process. Characteristic moire - image interference fringes were observed on Au islands after the formation of SAM. Conclusively obtained results suggest that the self-controlled adsorption, the SAM process was achieved on Al in benzene solution of C_{60} derivatives: We will continue to obtain molecular TEM images and also to measure electronic conductivity of the SAM

Acknowledgments
This work was supported by Grant-in-Aid for Developmental Scientific Research No. 10875071 from the Ministry of Education, Science, Sports and Culture, Japan. The authors wish to thank Advanced Materials Science Center of their college for helps by physical analyses.

References

1) H. W. Kroto, J. R. Heath, S. C. O' Brien, R. F. Curland and R. E. Smalley, Nature, 318 , 162(1985).
2) W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, Nature, 347, 354(1990).
3) X. Shi, W. B. Caldwell, K. Chen, and C. A. Mirkin, J. Am. Chem. Soc. 116, 11598(1994).
