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We consider the non-crossing effect of the multilayer membrane system consisting of bilayer lipid sheets 
embedded in water. Using a simple one-dimensional model, we evaluate the free ener~ increment due to 
the entropy loss induced by the non-crossing nature. The free energy increment !:lf{p) per unit length 
of one membrane is expressed as b..f(p) = Bp213 , where pis the membrane density and B is a positive 
constant. This anomalous behavior with the exponent 2/3 was verified by a Monte-Carlo simulation 
based on a solid-on-solid model. 
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1. INTRODUCTION 

As shown by Helfrich, fluctuation properties 
of the fluid bilayer lipid membrane are determined 
by the curvature elastic energy. 1•2 For an isolated 
membrane sheet, the curvature elastic energy is 
expressed by 

H= jdxdy~KI'V2u(x,y)l 2 , (1) 

where the x-y plane is chosen to be parallel to 
the mean membrane plane, u(x, y) is the displace­
ment of the membrane from the mean membrane 
plane and K is the rigidity of the membrane. 
For multilayer membrane systems consisting of 
equally spaced membranes embedded in water, 
the non-crossing nature between the membranes 
decreases the fluctuations. The reduction of the 
fluctuations induces the entropy-loss; from the 
view point of the free energy, this increases the 
free energy. 

In the present article, by a one-dimensional 
membrane model we analyze the non-crossing ef­
fect on the membrane density dependence of the 
free energy. As the Hamiltonian for an isolated 
one-dimensional membrane, we choose a one- di­
mensional version of ( 1): 

J 1 ~u(x) 2 Hone({u(x)}) = dx2Kid;2l , (2) 

where the shape of the membrane is denoted by 
y = u(x). For the multilayer membrane system 
with the membrane density p, the free energy f(p) 
per unit length of one membrane may increase 
with respect to that for an isolated membrane; 

f(p) = fo + !:lf(p), (3) 

where fo is the free energy of an isolated mem­
brane and 6.f(p) shows the increment of the free 
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energy induced by the non-crossing nature. Ac­
cording to the ordinary Landau theory, in the 
small membrane density limit, the additional term 
!:lf is expected to behave as 

b..f(p) = C1P + C2P
2 + · · ·, (4) 

where c1 and c2 are constants. However, it has 
been well known that the Landau theory is incor­
rect for strongly-fluctuating systems such as the 
membrane systems. Nattermann3 has proposed a 
simple self-consistent harmonic approximation to 
analyze the commensurate-incommensurate sys­
tem, which is one of the strongly fluctuating sys­
tems. The critical behavior obtained by the ap­
proximation is same as that by the exact solvable 
models.4•5 This shows the validity of this approx­
imation for the strongly-fluctuation systems. 

We use Nattermann's approximation and have 
the "anomalous" low membrane-density behavior 
quite different from the Landau theory: 

(5) 

whereB is a positive constant. Thus, the free en­
ergy is no longer analytic at the point p = 0. This 
type of result can never obtained by the Landau 
theory. 

To verify the above anomalous behavior, the 
Monte-Carlo simulation was performed. The MontE 
Carlo simulation strongly supports the result (5). 

2. SELF -CONSISTENT HARMONIC APPROX­
IMATION 

Let the multilayer membrane system consist­
ing of n one-dimensional membranes in the L x M 
space be considered. The shape of the j-th mem­
brane is denoted by y = Uj(x). The membrane 
density p is given by p = n/ M. As the interaction 
between the membranes, only the non-crossing 
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nature is taken into account. The partition func­
tion of the system is given by 

n 

exp(-.BLHooe({u;(x)})], {6) 
i=1 

where {3 = 1/(ksT) (k8 : Boltzmann constant, 
T: temperature) and() denotes the non-crossing 
nature;()= 1 if u1(x) < u2(x) < · · · < Un(x) for 
all x and oth.:.rwise () = 0. 

In the self-consistent harmonic approximation, 
a harmonic well potential is introduced instead 
of the non-crossing condition (). Let us intro­
duce the variable Y;(x) expressing the deviation 
of the j-th membrane from the reference position 
jfp; Y;(x) = u;(x)- jfp. The harmonic poten­
tial expressing the non-crossing nature is given 
by (1/2)m2yJ, where m2 is a positive parameter 
which expresses the "magnitude" of the well and 
is determined self-consistently. Thus, the effec­
tive Hamiltonian for the j-th membrane is given 
by 

~!e({Y;(x)}) = J dx[~KicP:~x)l2 

+~m2yJ(x)]. (7) 

In terms of {7), the partition function ( 6) is ap­
proximated as 

Zapp = ]lJIT dy;(x) X 

J X 

n 

exp(-/3 L Hone({y;(x) })]. 
j=1 

(8) 

The self-consistent equation determining the 
parameter m2 is given by 

2 (1 2 < Y; >eff= C -) , 
p 

(9) 

where < · · · >eff stands for the thermal averar?re 
with respect to the "effective Hamiltonian" H~ne 
and C is a positive numerical factor. The l.h.s of 
eq.(9) is easily calculated and given by 

< y~ > = _1_m-3/2K-l/4. 
1 eff 2y'2,B 

Thus we have 

m2 = C1p8/3, 

with 

C = (__Q_)-4f3(k T)4/3 K-1/3. 
1 2y'2 B 

(10) 

(11) 

(12) 

From the partition function Zapp• the approx­
imated free energy per unit length of one mem­
brane is given by 

1 
/app =-kaT nL lnZapp 

A {3K A 4 m 2 

= k8 T( 271" ln 271" + 271" ln(A + K) 

_3_A + __!_m1/2 K-1/4] (13) 
71" Y2 , 

where A= 271"/a (a is an atomic-scale length) is 
the large wave-number cut-off. Using (11), we 
have the free energy for small p: 

/app = fo + b.f(p), (14) 

where 

A {3KA4 

fo:::::! ksT-ln--, 
271" 271" 

(15) 

and 

{16) 

with 

(17) 

In the above, fo is the free energy of an isolated 
membrane and b.f(p) is the increment of the free 
energy induced by the non-crossing nature. 

3. MONTE-CARLO SIMULATION 
The anomalous small p behavior (16) was con­

firmed by a Monte-Carlo(MC) simulation. A sim­
ple solid-on-solid membrane model was chosen. 
In the model, the membranes sit on a L x M 
square lattice and the shape of the j-th membrane 
is given by (X,u;(X)), where X and u;(X) are 
integer. The mean membrane running direction 
is chosen to be parallel to the x axis. In the x and 
the y directions, the periodic boundary condition 
is imposed. The energy of the j-th membrane is 
given by 

M 

E; = ~J L [u;(X -1) + u;(X + 1) 
X=1 

-2u;(X)]2 , (18) 

where J is the "microscopic" rigidity. The above 
model is a discretized version of the continuum 
model (2). The equivalence between (2) and (18) 
in the large wave-length has been shown.6 There­
fore, we can expect to obtain correct results by 
the Monte-Carlo analysis based on the "micro­
scopic" model (18). 

Since calculation of the free energy by means 
of the MC method is difficult, the internal energy 
c(p) per unit length of one membrane was calcu­
lated. The free energy and the internal energy are 



Yo-ichi Kawashima et al. Transactions of the Materials Research Society of Japan 25 [3] 759-761 (2000) 761 

related as -1_'28(/(p)/T}&T = e(p). Thtis, if the 
result (16} is ~orrect, the internal energy should 
behave as 

e(p) =eo+ B' p213 , (19} 

where eo is the internal energy of an isolated mem­
brane and B' is a constant. 

The MC simulation was performed by the en­
ergy (18) under the non-crossing condition u1 < 
ii2 < · · · < iin. The temperature was chosen as 
T = J/(2ka}. For thermalization, 5 x 106 Monte­
Carlo steps (MCS) were required. The averages 
were taken over 5 x 106 MCS. The number of the 
membrane n ~ taken to be 10~_. The length of 
the membrane L was chosen as L = 300 "' 1500 
depending on the membrane density. 

The (bp) 213-bef(J/2} plot obtained by the MC 
simulation is shown in Fig.1, where b is the lat­
tice spacing of the solid-on-solid model. The plot 
sits on a straight line expressed by be/(J/2) = 
0.5022- 0.2151(bp)213 in the small p region. The 
slope and the intercept of the line were obtained 
by the least squares method. The asymptotic lin­
ear behavior of the (bp) 213-bej(J/2) plot strongly 
supports eq.(19). 

The (bp)-t::j(J/2) plot is shown in Fig.2. In 
the figure, the solid line corresponds to the asymp­
totic line in Fig.1. Figure 2 clearly shows the 
non-analytic properties of the internal energy at 
p = 0; it is found that the Landau approach ( 4) 
is unapplicable to the membrane problem. 
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Fig.1 The (bp) 213-bej(J/2) plot of the MC 
result. 
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Fig.2 The (bp)-be/(J/2) plot of the MC result. 

4.SUMMARY 
We have discussed the non-crossing nature of 

a one-dimensional multilayer membrane system. 
We have paid attention to the free energy incre­
ment due to the entropy loss induced by the non­
crossing nature. By the self-consistent harmonic 
approximation, an anomalous behavior of the free 
energy f(p) = fo + Bp213 for low membrane den­
sity p is obtained. This free energy is quite dif­
ferent from that obtained by the ordinal Landau 
theory. The free energy behavior was verified by 
a Monte-Carlo simulation based on the solid-on­
solid model. This shows that ordinal mean-field 
approaches such as the Landau theory are not 
suitable for this membrane problem. 
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