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Electronic and geometric structures of metal-silicide clusters 
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Negative/positive ions of W-silicide cluster are produced by a laser vaporization source for two rods of W 
and Si. The W-silicide clusters with a metal atom, WSin, are only observed for the size-range of n 2: 4 
in the mass spectrum and but are exclusively observed for n 2: 6. Especially, WSi15 ± as well as WSi16 + 
are remarkably stable comparing with WSin ± of the neighboring sizes. Photoelectron spectra for their 
negative ions and the adsorption reactivities toward H2 0 suggest that the stability of WSin ± for n 2: 10 
is due to the geometric structure containing a metal atom. 
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1. INTRODUCTION 

Metal silicides (MSi, MSi2 , and M2Si etc.) 
are extensively used as a Schottky-barrier ma­
terial at the metal-semiconductor connection in 
semiconductor devices[!, 2]. Meanwhile, semi­
conductor clusters and their quantum dots have 
been known to show size-dependent band gaps 
due to cluster size/quantum size effect[3]. Metal­
silicide clusters are also expected to be as a 
cluster material which show the band gap and 
the electronic properties with these size depen­
dences. 

In this article, we investigate the photoelec­
tron spectra and the adsorption reactivities of 
W-silicide clusters (WSin) using the photoelec­
tron spectroscopy for negative ions and chem­
ical probe method for positive ions. The size 
evolution toward the photoelectron spectra of 
WSin- and the adsorption reactivity of WSin + 
suggests the existance of the bimodal geometric 
structures. We will discuss on the stability, con­
necting with the geometric properties. 

2. EXPERIMENTAL 

The experimental setup was described in 
detail previously[4, 5]. Briefly, the metal-silicide 
cluster negative/positive ions are produced by a 
laser vaporization source. The second harmon­
ics of two Nd:YAG lasers (532 nm) were focused 
on to a W and a Si rods individually. As for 
photoelectron spectroscopy for negative ions, the 
formed negative ions were introduced via a skim-
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mer into a time-of-flight (TOF) mass spectrom­
eter. In the photodetachment region, the mass­
selected negative ions were photo-detached by 
the fourth harmonics of a pulsed Nd:YAG laser 
(266 nm; 4.66 e V). The photoelectron spectra 
were recorded by measuring the kinetic energy 
of electrons photo-detached from the negative 
ion, using a magnetic-bottle type photoelectron 
spectrometer. While, the adsorption reactiv­
ity of WSin + with H2 0 was examined employ­
ing the flow-tube reactor (FTR) combined with 
the double-rod laser vaporization source[5, 6]. 
The reactant H20 seeded in helium gas at room 
temperature was injected into FTR, at which 
a pulsed valve was synchronized with the pass­
ing bunch of metal-silicide clusters. In order to 
estimate the reactivity, the mass spectra were 
recorded in the presence and absence of reac­
tant. 

3. RESULTS AND DISCUSSION 

3.1 Mass Spectroscopy of WSin-

Fig.l shows TOF mass spectra of negative-ion 
species produced from a double-rod laser vapor­
ization source toward the W and the Si rod. As 
shown in Fig.l, two major species were found in 
the mass spectrum. The species are as follows: 
silicon clusters (Sin-) in smaller mass range and 
W -silicide clusters (W m Sin-) in larger one. The 
Sin- clusters have already been known to show 
the characteristic size distribution resulting from 
thermal fragmentation[?]. The present Sin- dis-
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Figure 1: Typical TOF mass spectra of W­
silicide cluster negative ions obtained from a 
double-rod laser vaporization source. The filled 
circles ( •) represent the mass peak for major W­
silicide clusters. 

tribution observed in this mass spectrum is ex­
pected to reproduce the previously reported re­
sult. Meanwhile, for W -silicide clusters, WSin­
containing a W atom was only observed in the 
size range of n 2: 4 and existed dominantly in the 
size range around n"' 10, but no W-silicide clus­
ter containing multiple W atoms was observed 
throughout the present work. Moreover we un­
expectedly found that WSi15 - was a prominent 
species comparing with ones of the neighboring 
sizes. Similar trend has been observed for the 
positive ions: WSi15 + and WSi16 + are stable as 
quite magic numbers[9, 10]. Comparing WSin­
with Sin-, WSin- clusters are expected to be 
stable with more Si atoms rather than pure Sin-. 
In order to reveal whether this trend is due to the 
electric properties or due to the geometric ones, 
we will discuss the photoelectron spectroscopy 
of WSin- in next section. 

3.2 Photoelectron Spectroscopy of WSin-

Fig.2 shows the photoelectron spectra 
of metal-silicide cluster negative ions WSin- (n 
= 4-17), using a 266-nm-ptotodetachment laser. 
The electron affinities estimated from the ap­
pearance thresholds of photoelectron ejection are 
as shown in Fig.2. The photoelectron spectra of 
Sin- clusters at 266 nm have been reported in 
the same size range[ll, 12]. The silicon cluster 
negative ions were categorized into two charac­
ters in the neutral electronic structures; closed­
shell clusters (n = 4, 6, 7, 10, and 11) with an iso­
lated small bump in their photoelectron spectra, 
which enable us to estimate the HOMO-LUMO 
gap, and open-shell clusters (n = 3, 5, 8, and 12) 
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Figure 2: Photoelectron spectra of WSin- ( n = 
4-17) obtained at 266 nm ( 4.66 e V). Arrows at 
the spectral threshold mark the electron affini­
ties. 

without the bump. 
For WSin-, the distinct bump is clearly found 

in the photoelectron spectra for the sizes of n = 
4-8. Then the HOMO-LUMO gaps are expected 
once to converge into a single peak at n = 10. 
For n ::; 9, the spectral profiles of WSin- and of 
Sin- are more alike except for small open-shell 
clusters of n = 3, 5, and suggestively 8. In the 
photoelectron spectra of these open-shell clus­
ters, a new small bump appears. This behavior 
could be explained by one-electron transfer into 
a LUMO level of bare silicon cluster from metal 
atom. On the contrary, the small bump abruptly 
disappears from the photoelectron spectrum of 
WSi10 - although the bump has been observed in 
the spectra of Sin-. The small-bump vanishing 
at n = 10 suggests that strong chemical bond­
ings are formed among a W atom and Si atoms, 
and that WSi10 - prefers to have some geomet­
ric structure with more rich interaction on W -Si. 
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Figure 3: Relative adsorption reactivities of 
WSin + with H20. 

Over n = 11 - 15, the bump at threshold is in­
conspicuous, and the spectral profiles are quite 
similar to that of n = 10. These points suggest 
that WSi10 - for n 2:: 10 have in common the 
similar core to WSi10 -. In order to conjecture 
those geometric structures, we examine the ad­
sorption reactivition of W-silicide clusters. 

3.3 Adsorption reaction of WSin + with H2 0 

The chemical probe method using FTR has 
the advantage of roughly estimating the geo­
metric structure and the location where a re­
active center is located in/on the cluster[6, 8]. 
The mass spectra were recorded in the pres­
ence/absence of reactant H20 (~0.6 %) seeded 
in helium gas. As the mass peak of prepared 
clusters is Io and one of remaining clusters I, 
the reactivity R is described by R = -ln(I/10 ). 

Fig.4 shows the reactivity of WSin + clus­
ters with H2 0 obtained from the chemical probe 
experiment. This size-dependent reactivity is 
roughly divided into two regions; (1) high reac­
tivities for 7 S n S 9 and (2) relatively smaller 
ones for n 2:: 10. These trends are quite simi­
lar between WSin- and WSin + independent of 
their charges[14]. The reacitivities of Sin+ with 
H2 0 and D20 provide us with a hint to un­
derstand the interaction of WSin + clusters with 
H20. According to previously reported results of 
Sin+, the reactivity for n S 6 decreases with n 
and one for n = 5 and 6 is negligibly sma11[13]. 
While, the reactivity for n = 10 - 30 strongly 
shows the size-dependence, and especially Sin+, 

Si13 +, Si14 +, Sit9 +, and Si23 + are unreactive[8]. 
Therefore, as shown in Fig.4, the behavior for 
reactivity of WSin + is quite different from that 
of Sin+. Consequently, this is suggested that 
the reactivity of WSin ± is drastically affected by 
the W-H20 interaction. Indeed, we observed the 
striking reaction of w+ with H2 0 in the mass 
spectrum; w+ + x(H20) -+WOn+ (n = 1- 3). 
Assuming that W atom behaves as .a reaction 
center, the behaviors ofthe size-dependent reac­
tivities for (1) and (2) as mentioned above are 
easily understandable. However, it is impossi­
ble to explain the abrupt depression at n = 10. 
For negative ions as shown in Fig.4, we observed 
quite similar behavior for the size-dependent re­
activity, although the signal intensities were far 
lower in the chemical-probe experiment for nega­
tive ions than for positive ions. It is conjectured 
that the depression at n 2:: 10 is due to geomet­
ric structure rather than due to the electronic 
structure, and that the geometric structure at 
n 2:: 10 changes suddenly into the structure that 
the reaction-centered metal is besieged by sili­
con atoms. As mentioned previously, the photo­
electron spectra of n = 10 feasibly indicate the 
structural change. For n = 10, the interstitial 
structure, which prefers the direct W-Si interac­
tion, should be supported in this work as S. M. 
Beck said[9, 10]. In the same way as n = 10, an­
other WSin ± clusters for n 2:: 10 consist of such 
metal-centered structure. The drastical change 
at n = 10, which the location of metal atom 
transfers from the surface to the inside of Sin 
cluster, is expected to involve with as a micro­
scopic phase transition in silicide crystals. For 
WSi15 behaving as a magic number, the cluster 
is stabilized from the geometric property rather 
than electronic ones because there is no serious 
difference among the photoelectron spectra of 
n = 14 - 15. At present, we also have no re­
sults on the structure of WSi15 ± supported by 
theoretical calculation. However WSi15 ± struc­
ture is expected to be close to the substitutional 
one consisting of WSi16 unit extracted from di­
amond structure of bulk Si crystal. 

4. CONCLUSIONS 

In this article, we have investigated the elec­
tronic and geometric structures of the W-silicide 
clusters, WSin ±, using the photoelectron spec­
troscopy and the chemical-probe method. Both 
of the photoelectron spectra for negative ions 
and the chemical reactivities with H2 0 indicate 
that a W atom is located on the surface of Si 
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cluster for n :S 9 and in the network of Si cluster 
for n 2: 10. In the latter clusters, the WSi15 - is 
particularly stable as a magic cluster. This sta­
bility for n = 15 as well as n 2: 10 is attributed 
to arising from the geometric structure rather 
than the electronic one. These behaviors may be 
concerned in the microscopic feature toward the 
infiltration of metal impurity into silicon crystal. 
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