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A discrete model of one-dimensional elastic media and the soliton 

theory 

Katsuhiro Nishinari 
Department of Applied Mathematics and Informatics, 
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A discrete model of an extensible string in three dimensional space is proposed in this paper. 

The model contains the bending and twisting, and becomes the special Cosserat elastic string 

in the continuous limit. We also present a new method of analyzing a string by the soliton 

theory, which can reduce the basic equations to a simpler tractable form. The discrete basic 

equations are also shown to be suitable for numerical simulations of string dynamics. 
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1. Introduction 
In this paper, we propose a discrete model of an 
extensible string in three-dimensional space, which 
contains the bending and twisting of a string. More
over, it is shown that the new model produces the 
special Cosserat string in the continuous limit. 'Ne 
point out that the soliton theory will be quite ef
fective when we study one-dimensional media. The 
reason is that the Frenet-Serret formula can be con
sidered as the Lax pair in the soliton theory. Gold
stein and Petrich[l] have shown that the dynamics 
of a curve in a plane is governed geometrically by 
the modified Korteveg-de Vries(mKdV) equation in 
a particular case. A mathematical curve, however, 
is different from a physical string, which has finite 
cross section. Thus in the previous papers[2,3] we 
have proposed a way of applying these soliton ap
proaches to analyze dynamics of physically contin
uous and discrete strings in a plane. We use this 
method in this paper and consider dynamics of a 
string in three-dimensional space. 

2. Elastic string and Cosserat theory 
Let us consider an extensible string in the three 
dimensional space. The axis of the string is 
para.metrized by er, which represents the un
stretched length of the string. It forms a space curve 
with position r = r(er, t). The unit tangent vector t 
for the axial curve is given by the relation 

8r 
8er = ylgt, (1) 

where g is a metric which represents the stretch of 
the axis defined by 

(2) 

651 

Using g, the arclength s of the string is given by 

s = 1" Jg(er', t) der'. (3) 

One can define a local orthonormal basis t, nand b 
by 

K 

0 
-T 

where 17 and K are called components of curvature 
and r the twist. 

The conservation of linear and angular momen
tum leads to equations for the force and the moment 
which take the form 

as 
(5) 

8er 

8M + 8r x S(6) 
8er 8er 

where S and M are the resultant stress and mo
ment, p the line density, Z the area of a cross sec
tion and I the geometrical moment of inertia of the 
string. The total derivative with respect to time is 
written as 

d 8 ds 8 8 (! d ) 8 _ - = -+-- = -+ -lny'gds -. (1) 
dt 8t dt 8s 8t dt 8s 

It is noted that 8/8er = ylg8/8s and the deriva
tive with respect to t does not commute with the 
derivative with respect to s but with er because of 
the stretching effect. In (5) and (6) the stress and 
moment are represented by 

s 
M 

Ft + Q1n + Qzb, 

l\J1t + Mzn + l\13b, 

(8) 

(9) 
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where F and 1\I; are given by linear constitutive 
equations: 

EZ(y'g- 1), 

GlTy'g, 

ElrJvg, 

Ehy'g, 

(10) 

(11) 

(12) 

(13) 

where E is the modulus of elasticity and G is the 
shear modulus and J = 2! because of neglecting 
the warping. The resultant shears Q1 and Q2 are 
not determined by constitutive equations and con
sidered as reactive parameters in the equations of 
balance of momentum. 

3. Continuous soliton theory 
We present a way of the analyzing of the string in 
three-dimensional space by the soliton theory. Let 
the curve dynamics be of the form 

dr 
dt = Ut + W n + Vb (14) 

and 

without loss of generality, where U, W and V are 
components of a velocity of the string and A, B and 
C represent dynamics of a basis which are deter
mined below. Differentiating (2) with respect to 
time and using (14) we obtain 

d au 
dtg = 2g( a; -KW+ rJV). (16) 

From (3) and (16), we have the commutation 

a d d a au a 
asdt- dtas =(a;-KW+ryV)as· (l7) 

Differentiating (14) with respect to sand using (4), 
(15) and (17) we obtain the expressions for A and 
B as 

A 

B 

aw 
-+KU-TV 
as ' 
av 
- +TW-ryU 
as 

(18) 

(19) 

Using (17), compatibility condition for ( 4) and (15) 
gives dynamics of curvatures 

dK 
-d =As -ryC- TB- (Us- KW+ ryV)K (20) .t 
dry 
dt =KC- Bs- TA+ (Us- KW -ryV)ry (21) 

dT 
dt = Cs + r;_B + 'r]A- (Us -KW+ rJV)T. (22) 

It is noted that (20) - (22) contain soliton equations 
as special cases by selecting U, W and V as special 
functions of curvatures. 

Finally, differentiating (14) with respect to time 
gives 

d
2

r=(dU -WA-VB)t+(dW +UA-vc)n 
dt 2 dt dt 

+ ( ~~ +WC+ U B) b (23) 

Substituting (8) - (13) into (5) and (6), the com
patibility conditions for (23) and (5) are 

pZ(dU -WA-VE)= 
dt 
a,;g 

EZ a(J' - "'y'gQ1 + ryy'gQ2, (24) 

dW 
pZ(-d + UA- VC)= .t 
aQ1 a(J' + EZKy'g( J9- 1) - rJy'gQ2, (25) 

pZ(~~ +\;VC+ UB) = 

aQ2 a(J' - EZ17y'g(y'g- 1) + ryy'gQ1 (26) 

by comparing the coefficients of t, n and b, respec
tively. Similarly substituting (15) into the left side 
hand of (6) and comparing the coefficients of t,n 
and b to obtain 

2pldC =GJ 0TJfj (27) 
dt a(J' 

pi(- ddB + AC)=EI 
817av'9 - y'gQ2 + ugKT(28) 

.t (}' 
dA OKJ'§ 

pi( dt + BC)=El ---a;;- + JfjQ1 - et9T/T(29) 

where et = GJ- El. As mentioned above, the 
resultant shears Q1 and Q 2 are considered to be 
determined by the equations of balance of momen
tum (28) and (29). Therefore we neglect the inertia 
terms in (28) and (29) because of considering of the 
string which has quite small geometrical moment of 
inertia and obtain 

(30) 

(31) 

When we consider dynamics of the twist, we must 
take into the effect of the inertia, i.e., an finite area 
of cross section. Thus we employ (22) and (27) for 
dynamics of T. The variable C plays the role of an 
auxiliary variable in this theory. Therefore, eight 
equations (16), (20), (21), (22), (24), (25), (26) and 
(27) for unknown variables G, li, 17, T, U, W, V and C 
are considered as a new basic equations for the ex
tensible string. 

4. Discrete model of a string 
In this section, we propose a discrete model of an 
extensible string discussed in the previous section. 
The equation for balance of the force is given by 

d2rn 
m dt2 = Nn- Nn-1- Qn + Qn-1 := Fn (32) 
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where m is mass of a bead, rn is a position vector in 
the space, Nn and Qn is resultant axial force and 
shear force of a spring, respectively( Fig. 1). 

Figure 1: Discrete model of one-dimensional 
elastic media 

The linear constitutive equations for N n and Qn 
are given by 

Nn klrn+1- rnl-lt = kGn -lt (33) 
l n- l n, 

Qn 
M~+1 -M~ +Rn (34) 

Gn 

where 

Mr n 
K On ( T-.-- -tn-1 + cosontn), 

SlllOn 
(35) 

Mi K On ( ) (36) l -.-- tn - COS On tn-l , n Sin On 

Rn On X tn, (37) 

On 
h 
y(D.Wn+ltn+l - D.'I/Jntn)· (38) 

M~ and M~ are the bending moment applied to a 
bead from right and left side, respectively(Fig.2). 
On is a twist vector of the axis spring(Fig.3) and 
Rn is the shear force which comes from twisting. 
In these equations, k is a spring constant for axis, 
K a spring constant for bending, l an unstretched 
length of an axis spring. 

t,. I 

A 

Figure 2: Bending moment in the discrete model 

n ~'{', 

Figure 3: Twist in the discrete model 

On is defined in Fig.2 and D.c/Jn is one of the rela
tive Euler's angles and they relate local orthonormal 
bases as 

;~::~ ) ( !: ) 
P9n+l bn 

(39) 
where En is a shift operator defined by Enf(n) = 
f(n+1). Pin(n = 1, · · · ,9) are expressed by relative 
Euler's angles D.1/Jn, D.Bn and D.c/Jn [3]. The equation 
(39) is considered as a discrete version of (4). We 
divide (39) by Gn and also taking Gn --> 0 with the 
formula Gn/l --> ,f§ in the limit, from ( 4) we obtain 
the relations 

T 

Next we consider the limit of (33). Following the 
same procedure above, we obtain 

N = k(.J9 -l)t (40) 

This coincides with (10) if k = EZ. In the case 
of (34), we obtain the continuous limit of the shear 
force Q as 

Q 
8"'yg 

(K -----a;-+ (K- h).j9Try)n 

8ryyg 
+( -K ----a;-+ (K- h)yfgT"')b 

-Q1n- Qzb. (41) 

Thus these also coincide with (30) and (31) if K = 
El and h = GJ. Putting m= pl and dividing (32) 
by l and using 

lim Nn- Nn-1- Qn + Qn-1 = 8N _ 8Q (42) 
l~O l OCY OCY 

it is apparent that (32) becomes (5) in the continu
ous limit. 

Next, we consider dynamics of twisting of the 
discrete string. Since this discrete model naturally 
contains the representation of (30) and (31), then 
we only consider tn component of equations for the 
moment as discussed in the previous section. Such 
discrete equation is given by(Fig.1.3) 

d
2
nn d

2
bn) (On) 

pJ(nn X ---;}j2 + bn X dtZ tn = -1- tn., (43) 

where picking up tn component is represented by 
(- · · )tn . Since 

. On OT,fij 
hm(-

1
-)t" = h-0-, 

!-0 (Y 

(44) 

(43) coincides with tn component of (6) in the limit. 
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5. Discrete soliton theory 
Let us introduce the discrete soliton theory in order 
to analyze the discrete model of a string. We put 
velocity of a bead and dynamics for the orthonormal 
basis as 

0 
-An 
-En ) ( ~: ) . 

(46) 
Differentiating 

(47) 

with respect tot and using (45), (39) and (46), we 
obtain 

dGn 
--;{t = -Un.+Pln+1Un.+1+P4,.+1 Wr.+1+P7n+1 Vn+1, 

(48) 

1 
Gn ( -TVn + P2n+1Un+1 + P5n+1 Wn+1 

+P8n+1 Vn+1), 

En. 
1 

Gn (-Vn + P3n.+1Un+1 + P6n+1Wn+1 

(49) 

From the compatibility condition of (39) and (46) 
we obtain time evolution equations for relative Eu
ler's angles: 

df::..!/Jn 
dt 

d!::..Bn 
dt 

df::..1/Jn 
dt 

-A. A cos !::..·1/Jn _ E _si_n_!::.._,...1/J"c--n. 
n-1 + n n 

COS f::..Bn COS !::..Bn 
+Bn-1 sin !::..4;, tan !::..Bn 

(50) 

En-1Cos!::..!/Jn- Bncos!::..1/Jn 

+Cn-1 sin !::..4Jn - An sin !::..1/Jn, (51) 

C C cos !::..1/Jn E sin !::..1/Jn 
n- n-1 "B + n.-1 

COS.:....>. n COS f::..Bn 
-En sin !::..1/Jn tan !::..Bn 

+An tan !::..Bn COS !::..1/Jn. (52) 

These equations also contain discrete soliton equa
tions as special cases, which are integrable by the 
soli ton theory. These are a discrete version of (20)-
(22). 

Substituting (38) and ( 46) into the moment equa
tion ( 43) we obtain 

dCn h ( ill = 2pJ[2 f::..1/Jn+1 COS f::..c/>n+1 COS f::..Bn+l- !::..1/Jn). 

(53) 
Next, differentiating the velocity ( 45) with respect 
to time gives 

Comparing coefficients of (54) and (32), we obtain 

dUn A W E V. (Fnh., (55) 
dt 

n n + n n + ---, 
m 

dWn A U C V. (Fn.)n" (56) 
dt 

- n n+ n n+---, 
m 

dVn -En.Un- Cn Wn + (Fn)b". (57) 
dt m 

Therefore eight equations (48), (50)-(52), (53), 
(55)-(57) for Gn.,!::..c/>,!::..8,!::..1j;,C,,U,,Wn and Vn 
are basic equations for the discrete string. These 
are a discrete version of the continuous equations 
given in the previous section. 

5. Numerical scheme 
The proposed discrete model is suitable for com
puter simulation of dynamics of a string. We can in
tegrate eight equations with respect to time by some 
explicit methods, such as the Runge-Kutta method 
and we did not use matrix calculations. Moreover, 
these equations converge to the Cosserat string in 
the l-+ 0 limit. Thus we can simulate dynamics of 
an elastic string in a desired accuracy by choosing 
small l. Figure 4 shows a snapshot of the expand
ing helix in free space, which is an exact solution 
of complex-generalized mKdV equation in its ini
tial condition. Other examples, such as pully-belt 
systems, will be appear elsewhere. 

z 

,. 

z 

,. 
Figure 4: Snapshot of helix motion 
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