Silicon Isotope Separation by Infrared Free Electron Laser

Hiroshi Suzuki, Hiroshi Araki, Tetsuji Noda and Koichi Yagi National Research Institute for Metals 1-2-1, Sengen Tsukuba Ibaraki 305-0047 Japan Fax: 81-298-59-2801, e-mail: suzuki@nrim.go.jp

S ilicon isotope separation through irradiation of Si2F6 using an infrared free-electron-laser (FEL) in the 800 cm⁻¹ and 1000 cm⁻¹ regions was examined. By controlling the laser wavenumber, preferential decomposition of Si₂F₆ into SiF4 and SiF2, enriched with ²⁹Si and ³⁰Si isotopes, was induced.

Key words: silicon, isotope separation, infrared free electron laser, Si₂F₆.

1. INTRODUCTION

Silicon consists of three stable isotopes: ²⁸Si, ²⁹Si and ³⁰Si. By controlling the isotope ratio, the thermal and nuclear properties of silicon can be improved [1]. A single crystal of ²⁸Si is predicted to have a high thermal conductivity due to the absence of isotope scattering by other isotopes [2]. SiC consisting of ²⁹Si and ³⁰Si is an attractive candidate as a material with low inducedradio-activation in high energy neutron irradiation environments [1]. Enrichment with ³⁰Si is advantageous in the production of n-type semiconductor doped with phosphor by neutron transmutation doping [3]. To realize such isotopically controlled silicon, a practical isotope separation process is required. Laser isotope separation with infrared multi-photon decomposition is very attractive method of producing a large amount of isotopes. Recently, silicon isotope separation of Si_2F_6 with a CO₂ infrared laser at 1000 cm⁻¹ was reported [4,5]. However, Si₂F₆ has additional absorption peaks at around 400 and 800 cm⁻¹. But, because of the limitations of CO₂ laser emission lines, it is not obvious that it is possible to achieve isotope separation with CO2 laser at these other infrared wavenumbers, while the free electron laser is tunable to these wavenumbers.

In the present paper, we study silicon isotope separation from Si_2F_6 by using an infrared free electron laser (FEL), in paticular in the 800 and 960 cm⁻¹ regions.

2. EXPERIMENTAL

The Si_2F_6 used in these experiments was produced by fluorination of Si_2Cl_6 with ZnF_2 . Si_2F_6 contained a trace of SiF_4 impurities. After purification of the Si_2F_6 , the final SiF_4 impurity was 0.06 and 0.09 vol% for two lots of Si_2F_6 .

Figure 1 shows a schematic of the experimental apparatus. The infrared FEL at the FOM Institute for Plasma Physics in the Netherlands was used as a light source. The wavenumbers of the FEL were set at 786-814 and 950-972 cm⁻¹. A laser pulse consisted of 10 μ s macropulse with a 8.33-10Hz repetition frequency composed of 1 ns micropulses with a repition rate of 1 GHz. The beam diameter was 2 mm and the laser energy was 12-27 mJ in front of the reaction cell.

Fig. 1 Schematic of experimental apparatus.

The laser beam was focused by a ZnSe lens and introduced into a reaction cell. The reaction cell was a cylindrical Pyrex glass tube, 100 mm long, 10 mm in inner diameter, and equipped with KCl windows at both ends. The flow rate and pressure of Si_2F_6 were set at 8.3 mm³s⁻¹ and 13.3 Pa. The irradiation was performed for 300 s at room temperature and decomposed the Si_2F_6 into SiF_4 gas and SiF_2 polymer. Both product SiF_4 and residual Si_2F_6 were captured with a liquid nitrogen cold trap and then separated into each component through low temperature distillation. The isotope ratios were determined by using a quadrupole mass spectrometer from the relative ion intensities of the isotope species.

3. RESULTS AND DISCUSSION

Figure 2 shows the infrared absorption spectrum of natural Si_2F_6 in the region of 700-1100 cm⁻¹. There are strong absorption peaks at 990 and 820 cm⁻¹ [6,7]. The peak at 990 cm⁻¹ is due to an asymmetric stretching vibration, and the peak at 820 cm⁻¹, to a symmetric vibration of the Si-F bond. Since the natural abundance ratio of silicon is ²⁸Si:²⁹Si:³⁰Si = 92.23:4.67:3.10, these peaks are attributed to the vibration of Si₂F₆ molecules containing ²⁸Si. Though the spectral lines for ²⁹Si and ³⁰Si are not apparent in this figure, they should be present around 990 and 820 cm⁻¹ [8]. Since the emission of the FEL covers these ranges, infrared multi-photon decomposition of Si₂F₆ molecules into products

containing ²⁹Si and ³⁰Si can occur effectively by selecting the appropriate wavenumber. The reaction producing SiF₄ by infrared multi-photon decomposition is assumed to be

Fig. 2 Infrared spectrum of Si_2F_6 around 700 to 1100 cm⁻¹.

Fig. 3 Enrichment factor of Si in the product SiF_4 as a function of wavenumber around 960 cm⁻¹.

Fig. 4 Enrichment factor of Si in the product SiF_4 as a function of wavenumber around 800 cm⁻¹.

Figure 3 shows the enrichment factor of Si in the product SiF₄ as a function of wavenumber around 960 cm⁻¹, where the enrichment factor β^i is defined as

$$\beta^{i} = (\text{product }^{i}\text{SiF4})/(\text{natural }^{i}\text{SiF4})$$
 (2).

When Si_2F_6 was irradiated around 950-972 cm⁻¹, the product SiF_4 was enriched with ²⁹Si and ³⁰Si. β^{29} has a peak value of 3.8 at 962.5 cm⁻¹ and β^{30} , of 5.7 at 956.9 cm⁻¹. These β values show that the product SiF_4 is composed 17.7% of ²⁹Si and 17.7% of ³⁰Si.

Figure 4 shows the enrichment factor of Si isotopes in the product SiF₄ as a function of wavenumber around 800 cm⁻¹. ²⁹Si was enriched in the product SiF₄ between 786-814 cm⁻¹. β^{29} has a peak value of 1.2 at 801.3 cm⁻¹, while β^{30} is smaller than 1 for all wavenumbers. The difference of β^{30} between the 960 cm⁻¹ region and the 800 cm⁻¹ region is probably due to the difference of the vibration modes of the Si₂F₆ molecules in the two regions.

Fig. 5 The infrared spectrum of Si_2F_6 (right axis), the FEL enrichment factors, and the CO_2 laser enrichment factors.

Figure 5 shows the infrared spectrum of Si_2F_6 (right axis), the FEL enrichment factors, and the CO₂ laser enrichment factors. The FEL data are the same as those in Figure 3, and the CO₂ laser data are from our previous study that was performed under the same experimental conditions but using a CO₂ pulse laser [9]. Since there is only a small emission gain for the CO₂ laser at 956-965 cm⁻¹, the pulse energy was not large enough to decompose the Si₂F₆, so there is no data in that region, while the FEL can emit continuously in that region, producing a β^{29} enrichment peak at 962 cm⁻¹. Compared to CO₂ laser results, the enrichment factor of FEL is relatively low. This can be attributed to two features of the FEL pulse: the spectral width, $\delta\lambda/\lambda$, and the macropulse length. The Spectral width and the macropulse length of the FEL are 1-2% and 10 µs

respectively, whereas those of the CO_2 laser are 0.003% and 104 ns, respectively. The broad spectral width and long pulse width probably contribute to the lower isotope selectivity of the FEL.

4. CONCLUSION

The isotope separations of 29 Si and 30 Si were made using the isotope selective infrared multi-photon decomposition of Si₂F₆ by infrared the FEL irradiation.

A relatively high enrichment of 29 Si and 30 Si in the product SiF₄ was observed for laser irradiation in the range 950-972 cm⁻¹.

For the first time, enrichment of 29 Si at around 800 and 960 cm⁻¹ has been achieved, by using an FEL rather than a CO₂ laser.

The low enrichment factor for the FEL compared to the CO_2 laser is probably due to the broader spectrum width and longer pulse width of the FEL.

REFERRENCES

[1] T. Noda, Kinzoku 7, 32(1993).

[2] P. G. Klements: Int. J. Thermophysics, 2, 323(1981).

[3] M. Tanenbaum, et al. J. Electrochem. Soc., 108,171(1961).

[4] M. Kamioka, et al. J. Phys. Chem., 90, 5727(1986).

[5] S. Arai, et al. Appl. Phys., B53, 199(1991).

[6] V. Tosa, et al. Vib. Spectrosc., 29, 631(1994).

[7] V. Tosa, et al. J. Mol. Struct., 410, 411(1997).

[8] L. Halonen, J. Mol. Spectrosc., **120**, 175(1986).

[9] H. Suzuki, et al. J. Jpn. Int. Met. 61,145(1997).

(Received January 19, 2001; Accepted March 23, 2001)