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A brief introduction is given for the order-N electronic-structure theory with localized states. 
Their locality is systematically investigated among the diamond-structure solids. The method is 
applied to molecular-dynamics algorithms. Test calculations with million atoms are done using a 
standard PC and parallel computers. The dynamical fractures of Si crystal are simulated using the 
above order-N method. Their brittle property is analyzed from the quantum mechanical view of the 
electronic structure. 
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I. INTRODUCTION 

Large-scale electronic-structure calculations are of 
great importance in nano materials. Recently, the 'order­
N' methods have been proposed for calculating such 
large-scale systems. The computational cost in the order­
N method is O(N), or linearly proportional to the sys­
tem size N [1). The present theory is one of such order-N 
theories, based on the localized one-electron states [2,3). 
The present article describes the order-N theory with lo­
calized states and some molecular-dynamics applications 
of Si brittle fracture. 

II. LOCALIZED STATES FROM THE FIRST 
PRINCIPLES 

The density-functional theory and the Hartree-Fock 
theory are modern quantum theories for electronic struc­
tures. These theories define one-electron states { .p~eig) h 
and effective one-body Hamiltonians Hetr that include 
the electron-electron interaction. Such one-electron 
states can be regarded as eigen states of the Hamilto­
nian 

H 
_.(eig) _ (eig)_.(eig) 

eff'l'k - c;k 'l'k · (1) 

Usually an eigen-value problem requires a O(N3 ) compu­
tational cost. This fact severely limits the system size of 
electronic-structure calculations to, typically, one hun­
dred of atoms. Even with simpler theories like tight­
binding approximations, it is impractical to calculate all 
the eigen states for systems with thousands of atoms or 
more. 

The present concept of localized states can be gener­
ally defined within the first-principle electronic structure 
theories. These states can be defined as localized one­
electron states that satisfy 

N 

Hetr.Pi = l:c;j</lj, 
j=l 

(2) 
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where N is the number of occupied states. Equation (2) 
is derived from a variational procedure within a single 
Slater determinant, as is in the Hartree-Fock theory and 
the density-functional theory. The parameters C:ij are the 
Lagrange multipliers for the orthogonality constraints 

(3) 

and satisfy C:ji = (</l;JHJ</lj)· Such states can be formally 
equivalent to unitary transforms of the eigen states 

N 

J</Jj} := 2: UjkJ<fJ~eig)}, (4) 
k 

where U;j is a unitary matrix. These localized states 

exactly reproduce any physical quantity (X) as 

N N 

(x) = l:(.P~eis)IXI.P~eig)) = l:(.PilXI.Pj), (5) 
k j 

because of Eq. (4). Especially, the sum of the one­
electron energies of the localized states gives the correct 
band-structure energy 

N N 

E _"" (eig) _"" 
bs = L..Jc;k - L..JC:jj> (6) 

k=l j=l 

though the Hamiltonian matrix C:ij is not diagonal. One 
example of the localized states is the Wannier state in 
the solid state physics. Their locality has studied in some 
cases [5,6]. Wannier states Wvz( r) can be written in a 
form of 

(7) 

Here the eigen states .p~kg), or Bloch states, have the suf­
fices of v for the band index and k for the wave vector in 
the Brillouin zone. Wannier states have a suffix l for the 
lattice vector that indicates their localization centers. [4) 
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Eq. (7) can be regarded as one of the unitary transforms 
(4), where the corresponding unitary matrix 

U -6 ikl 
vl,v•k = v,v•e (8) 

is diagonal with respect to the band suffix. In other 
words, the present concept of localized states is a gener­
alization of the Wannier state to composite-band systems 
and/or non-periodic systems. Such localized states can 
be called 'generalized Wannier states' [7-9]. 

For covalent-bonded systems, the simplest physical 
picture of a localized state cPj is the bonding orbital lo­
cated at the j-th bond site. Realistic applications to 
condensed matters, such as silicon crystal, can be found 
in Ref. [9] with the density functional theory, where the 
localized states are constructed using explicit unitary 
transforms ( 4). The resultant localized states are ex­
act, but are not constructed with an O(N) cost, because 
this procedure requires the eigen states. The localized 
states in the present order-N calculations correspond to 
approximate wavefunctions of the above exact wavefunc­
tions, within the framework of the variational procedure. 

Hereafter, for simplicity, we discuss the theories within 
a tight-binding Hamiltonian H. Equation (2) is closely 
related to the order-N formulation [2], where an energy 
functional 

N 

Eo(N) := z)26;j- (cPjlc/;;))(cf;;IOic/;j) (9) 
i,j 

is minimized. The operator n is defined as n := H - TJ 
and the energy parameter TJ must be chosen to be suffi­
ciently high (TJ > eWg)). Without any localization con­
straint, the variational procedure leads us to Eq.(2) and 
the orthogonality ( (cf;dc/;j) = D;j ). The practical order-N 
procedure is to minimize Eo(N) iteratively with respect 
to localized states { c/;j} under localization constraints. 
The resultant equation can be written in an eigen-value 
equation [3] as 

where 

H(j)l"'·) = e··l"-·) loc 'f'J JJ 'f'J ' 

Hul = H- p--n- np-J· loc J 

N 

Pi= 2::: 14;;)(4;;1. 
i(tj) 

(10) 

(11) 

This equation corresponds to the variational problem of 
one localized state ( c/;j ), where all the other localized 
states are fixed. The localized states are not eigen states 
of H, but are eigen states of H1oc· Equation (10) gives a 
general theory of the locality of the localized states [3]. 

Ill. LOCALIZED STATES IN 
DIAMOND-STRUCTURE SOLIDS 

The structures of the localized states are directly re­
lated to the electronic structure. We systematically in­
vestigate those among the gr~up IV elements: C,Si,Ge,a­
Sn. The ground states of these materials are the diamond 
structure. For these materials, a universal theory can be 
constructed within tight-binding Hamiltonians [10]. A 
minimal sp tight-binding Hamiltonian is constructed on 
the atomic s-,p,.-,py- and p.- orbitals, which are equiv­
alent to four sp3 orbitals. Bonding and antibonding or­
bitals can be defined from a pair of sp3 orbitals on each 
bond site and are denoted by {bj, aj }j, respectively. Here 
j indicates the bond site. The corresponding energy lev­
els are denoted as eb := (bjiHibj) and ea = {ajiHiaj), 
respectively. Since all the bond sites are symmetrically 
equivalent in the diamond structure, the above energy 
levels are the unique values (eb, ea) among all the bond 
sites. We also denote the difference between them as 
~ab := ea - eb. The energy ~ab describes the order 
of the energy gain in a bond formation. A sp tight­
binding Hamiltonian of single-element materials contains 
the following five energy parameters; One is the differ­
ence ~ps between the atomic p-level ep and the s-level es 
(~ps:=ep-£s)· The other four parameters are the nearest­
neighbor hopping integrals in the Slator-Koster forms, 
which gives ~ab· In general, these four inter-atomic hop­
pings are independent, but, the ratio among them is al­
most the same for the group IV elements [10]. Therefore, 
the system has essentially only two energy scales; the 
intra-atomic energy-difference ~ps, and the inter-atomic 
hoppings, mainly characterized by ~ab· To classify real 
solids, the ratio <l'm := ~ps/ ~ab is calculated from some 
sets of the tight-binding parameters. The resultant val­
ues are <l'm = 0.44 for C [11], <l'm = 0.78 for Si [12,13], 
and <l'm = 0.75 for Ge [11]. The parameter <l'm may be 
called 'metallicity', because the bandgap would goes to 
be zero at <l'm-+1 (10]. 

We construct localized states, using an iterative order­
N algorithm with the Hamiltonian H1oc with a periodic 
cell with 4096 atoms [3]. We also construct the exact 
localized states from the eigen states with a smaller sys­
tem size (512 atoms) [14]. The simplest approximation 
of the localized states can be given by the sp3 bonding 
orbital on each bondsite (lc/;j) RI lbj)). In the present 
order-N algorithm, such sp3 bonding orbitals are chosen 
to be the initial states of the iterative algorithm. To in­
vestigate common features of the above solids, we use 
the nearest-neighbor tight-binding Hamiltonians H for 
Si, whose parameters are from Ref. [13]. Here the inter­
atomic hopping parameters are functions of the nearest 
neighbor atomic distance d and the intra-atomic hopping 
parameter ~ps is fixed to be 6.75eV. We tune the value 
of d for the variety of <l'm. 
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Here we show some of our results with the order-N cal­
culations. Figure 1 shows the norm distributions ICix 12 

of some resultant localized states, where {x} = {bj, aj} 
indicates the basis orbital. The case (a) is the case 
with a low metallicity (am = 0.47), which might cor­
responds to the Carbon case. The case (b) is the Si case 
(am= 0.78). For both cases, the localized states are con­
tributed mainly by the central bonding orbital and the 
neighboring antiboding orbitals 

1</>j) :::::i C(O)Ibj) + L cCv(i))la;). 

i(h) 

(12) 

Here the suffix v specifies the bond step and the in­
equivalent bond sites. The neighboring bonding orbitals 
{lb;) h,tj have quite small contributions, because these 
are occupied by the other localized states {I</>;) };;tj. The 
norm of the central bond IC(o) 12 is about 96 % in (a) 
or 94 % in (b). The summation of the norms up to the 
second bondstep is about 99.8 or 99.7 % in both cases. 
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FIG. 1. Norm distributions of localized states IC('-')12
, as 

a function of the bondstep from the central bond. [3] The 
case (a) and (b) correspond to Carbon and Si systems, re­
spectively. The case (c) is the conduction localized states in 
the Si case. The closed circles and the open squares denote 
the norms on bonding and anti-bonding orbitals, respectively. 
The crosses denote the values from the perturbation theory. 

The contribution of the neighboring antibonding or­
bitals can be estimated by the first-order perturbation 
of Eq.(10) [3,14]. The resultant perturbative coefficients 
are given by 

cCv) 
C(O)- (13) 

The range of non-zero perturbative coefficients cCv) is 
determined by the interaction range of Hamiltonians. 
In nearest neighbor tight-binding Hamiltonians H, the 
interactions are limited to nearest neighbor atoms. In 
terms of bond sites, this turns out to be second nearest 
neighbor interactions, which is essential for the diamond 

structure. In the diamond structure, each bond site has 
six first-nearest-neighbor bond sites and eighteen second­
nearest-neighbor bond sites. The first-nearest neighbor 
bond sites are geometrically equivalent and the corre­
sponding perturbative coefficients are denoted as C(l). 
The second-nearest-neighbor. bond sites are classified into 
two geometrically inequivalent bond sites. The corre­
sponding coefficients are denoted as C(211) and C(21.), re­
spectively [15]. The resultant perturbative coefficients 
are also shown in Fig. 1 and reproduce the more accu­
rate values quite well. The energy of the localized states 
('l{>j IHI'!{>j) is also estimated from the perturbation the­
ory [15]. The estimated value has only a small deviation, 
0.06 eV or 1 %, from the correct value. This energy cor­
responds to the average of the occupied eigen levels, or 
the weighted center of the valence band. Here we can see 
that the present tight-binding Hamiltonian is a short­
range operator and its matrix element ('l{>jiHI'I{>j) can be 
well explained within a quite local area. 

The concept of the localized states can defined also for 
the conduction bands within the sp Hamiltonian [3,14]. 
Such a conduction localized state in the Si case is also 
plotted in Fig.l( c). The resultant state shows the sim­
ilar decay property as in the valence state (b), but the 
role of bonding and antibonding orbitals exchange with 
each other. 

IV. MOLECULAR DYNAMICS SIMULATION 
FOR THE FRACTURE OF SI CRYSTALS 

We have developed an order-N molecular-dynamics al­
gorithm based on the above variational and/or perturba­
tive theories. The test calculations were done in systems 
of up to about 1.4 million atoms, using a standard PC 
with single Pentium 4 processor and 2GB RAMs. Par­
allel computations are also tested [16]. Here, we show 
several results of the dynamical fracture simulations of 
silicon with external loads as shown in Fig. 2 [17]. We 
use a sp tight-binding Hamiltonian [13]. The systems 
are isolated clusters with orientation-fixed sp3 states at 
their boundaries. In smaller systems, satisfactory agree­
ments are obtained for the values of elastic constants 
and the crack-propagating velocity among the order-N 
calculations, the exact diagonalization, and experimen­
tal observations. For example, the order-N calculation 
gives the Young modulus E1oo = 105 GPa that is corn­
parable with the experimental value E1oo = 130 GPa 
and the crack-propagating velocity 2 km/s in compari­
son with the observed value :S 3.8 km/s. The fracture 
occurs when the band-gap goes to be zero. This is mi­
croscopically interpreted as bond-breaking processes or 
as vanishing the gap between bonding and antibonding 
states in some local region. The occupation ratio of s­
orbital for each localized state f~j) = l(slt/>j)l2 can be 
a good physical quantity for investigating the fracture 
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process. This quantity describes the extent of the sp 
hybridization and, for instance, is 1/4 for the ideal sp3 

state and 1/2 for the ideal s2 p2 state. Drastic change 
can be seen also in the projected density of states of the 
localized states in the bond-breaking processes. After 
bond-breaking processes, the localized states on the bro­
ken bonds are stabilized with a high value of f~j). This 
means that such states are similar to an atomic s-state, 
rather than a sp3 dangling-bond state. These 's-rich' 
states seem to be transitional and tend to re-bond some­
where later in the simulation. 

We can present the quantum mechanical view of the 
brittle fracture of Si crystals. The energies of atomic 
s and p states are C:8 = -5.45eV and C:p = 1.2eV, 
respectively, in the ideal tetrahedrally-bonded environ­
ment. Since an isolated silicon atom has the s2p2 con­
figuration, the averaged occupation ratio of s-orbital 
is the half (Is = 1/2) and the electronic energy is 
C:atom = (c:s + t:p)/2 = -2.13eV per electron. In per­
fect crystals, all the states are localized, constructed 
from the sp3 bonds and the corresponding energy level is 
C:bulk = -5.2eV. Therefore the stabilization energy (the 
cohesive energy) of the bulk electron system per electron 
is about 3 eV. In crack tips, the sp3-bonded network is 
locally broken and the existence of the low s level stabi­
lizes the transitional s-rich states. Therefore the bonds 
near the crack tips tend to be broken much easier than 
those at the bulk regions. This can be interpreted as the 
microscopic origin of the brittle fracture. 

V. SUMMARY 

The localized states can be defined from the first prin­
ciples and give a foundation of an order-N method for 
large-scale atomistic simulations. The localized states 
for the diamond-structure solids are systematically in­
vestigated with a universal tight-binding theory. The 
order-N method has been applied to the dynamical pro­
cess of the brittle fracture in Si crystals. The quantum 
mechanical view of brittle fracture is presented. 
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