Structural Characterization of Langmuir-Blodgett Films of the Dioctadecyldimethylammonium-Au(dmit)₂ Salt Studied by Infrared Spectroscopy and Atomic Force Microscopy

S. Morita, Y. F. Miura, K. Ikegami^{*} and M. Sugi

Department of Functional Chemistry, Faculty of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama, 225-8502, Japan Fax: 81-45-974-5290, e-mail: yfmiura@cc.toin.ac.jp

*Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, 305-8568 Fax:81-+81-298-61-5400

The structure of the Langmuir-Blodgett (LB) films based on the dioctadecyldimethylammonium-Au(dmit)₂ $(2C_{18}$ -Au(dmit)₂) salt has been investigated by infrared spectroscopy and atomic force microscopy (AFM). Although we normally utilize electrochemical oxidation process as the post-treatment to render the LB film conductive, the infrared spectra in the fingerprint region suggest that the oxidation of the Au(dmit)₂ moiety already seems to start at the air/water interface. The morphology of the LB films changes from a quasi-three-dimensional (Q-3D) structure to a two-dimensional (2D) one during the time for which the salt is kept at the air/water interface before compression.

Key words: LB films, Au(dmit)₂, infrared spectroscopy, atomic force microscopy (AFM)

1. INTRODUCTION

along the film plane [6].

A great deal of attention has been paid to the fabrication of the mono- and multi-layered systems using the Langmuir-Blodgett (LB) technique, which allows us to assemble organic molecules into organized two-dimensional molecular sheets utilizing the interface adsorption phenomena. Among the research activities for fabricating LB systems with various functions, the development of conductive LB films has become a growing area over the past two decades [1,2]. As the film-forming material, the sulfur-rich anion, metal(dmit)₂ (where H_2 dmit = 4,5-dimercapto-1,3-dithiol-2-dithione and metal = Ni, Au, Pd, Pt) is one of the intriguing candidates because its salts exhibit wide varieties of electronic properties ranging from semiconductors to superconductors [3-5].

We have already reported that the dioctadecyldimethylammonium-Au(dmit)₂ $(2C_{18}$ -Au(dmit)₂, Fig. 1) salt forms Langmuir films of good quality at the air/water interface without using matrix molecules and that the electrochemically-oxidized LB film of the $2C_{18}$ -Au(dmit)₂ salt shows the room-temperature conductivity $(\sigma_{I/R,T})$ as high as 2 S/cm

Since the macroscopic conductivity of the LB system is often limited by the grain boundaries and/or defects, the improvement of the higher-order structure is important to increase the conductivity. In general, for optimizing the film-forming conditions in the LB technique, several key conditions should be taken into account (e.g., species of ions, pH, subphase temperature, spreading solvent, compression speed of the film forming materials). Furthermore, some earlier works suggest

Fig. 1. The structure of $2C_{18}$ -Au(dmit)₂ salt.

that these film-forming parameters should be carefully treated in the time-domain because the film-forming reach their always materials do not thermodynamically-stable states immediately after the application of the spreading solution at the air/water interface [7-9]. Ikegami and coworkers also utilized the air/water interface as an active reaction field for the DCNQI (N. N'-dicyanoquinodiimine) LB systems, and pointed out that the air/water interface may provide an active reaction field for the CT complexes and radical salts in general [10-12].

As for the metal(dmit)₂ LB systems, Gupta and coworkers have already reported that the occupied areas of the dialkyldimethylammoniun-metal(dmit)₂ (metal = Pt, Pd, or Ni) salts increase with increasing the "waiting time (T_w) " [13, 14], which is defined as the time for which the salt is kept at the air/water interface, and the quality of the LB films is greatly improved in terms of the surface roughness. The effect of T_w upon the however, has not been investigated structure, comprehensively and the origin of the "spreading effect" has not been touched upon in these works. In this paper, we focus on the structure of the 2C18-Au(dmit)2 LB films fabricated with various values of Tw and report the Structural Characterization of Langmuir-Blodgett Films of the Dioctadecyldimethylammonium-Au(dmit)2 Salt Studied by Infrared Spectroscopy and Atomic Force Microscopy

analyses by infrared spectroscopy and atomic force microscopy (AFM).

2. EXPERIMENTAL

The dioctadecyldimethylammonium-Au(dmit)₂ $(2C_{18}$ -Au(dmit)₂, Fig.1) salt was synthesized following the procedure of Steimecke *et al* [15]. The $2C_{18}$ -Au(dmit)₂ salt was twice recrystallized in a mixture of acetonitrile and benzene and dried under reduced pressure for 12 h.

A KSV 5000 trough or a homemade trough whose dimension is the same as that of KSV-5000 was used. The $2C_{18}$ -Au(dmit)₂ salt was applied at the air/water interface from a 1:1 mixture of acetonitrile and benzene solution. The film at the air/water interface was compressed to 25 mN/m and transferred onto solid supports by the horizontal lifting method. The surface pressure (π) vs. area per molecule (A) isotherms were measured at a compression speed of 0.067 Å ²/(s • molecule) at 17-20 °C. For both of the film deposition and π -A isotherm measurements the floating compounds were kept at the air/water interface for 5 – 180 min after applying the solution at the air/water interface and then the compression was performed.

A 1-nm-thick CaF_2 plate was used for infrared spectrum measurements. The CaF_2 plates were hydrophobized by the coating of 5-layered LB films of cadmium arachidate. An Si wafer hydrophobized by 1,1,1,3,3,3-hexamethyldisilazane was used as the substrate for the AFM observation. The AFM images were obtained by a SEIKO SPA-300 atomic force microscope (AFM) using a tapping mode with a force constant of 1.5 mNm⁻¹. Infrared transmission spectra were recorded using a JASCO FT/IR-300 spectrometer.

3. RESULTS AND DISCUSSIONS

3.1. The π -A isotherms

Figure 2 shows the π -A isotherms of the 2C₁₈-Au(dmit)₂ salt measured at 17 °C. "Waiting time (T_w) ", which is defined as the time for which the salt was kept at the air/water interface before compression, is varied in the range from 5 to 180 min. The area per salt at 25 mN/m, where the film deposition was performed, is 12 Å² when $T_w = 5$ min (curve a). Since the dioctadecyldimethylammonium moiety is known to occupy 40-50 Å² in a monomolecular films at the air/water interface, the occupied area of 12 Å² is unexpectedly small, suggesting the formation of a quasi-three dimensional (Q3D) structure. However, the π -A isotherm of the 2C₁₈-Au(dmit)₂ salt is found to expand remarkably with increasing Tw, as shown in Fig. 2. In case $T_w = 180$ min, the occupied area at 25 mN/m reaches 30 Å² and the limiting occupied area is in the range 40-50 Å² [16], which is in good agreement with the cross section of the dioctadecyldimethylammonium moiety in a monomolecular film at the air/water interface. indicating a formation of a two-dimensional (2D) structure.

3.2. The infrared spectra

Figure 3 shows the infrared transmission spectra of the as-deposited $2C_{18}$ -Au(dmit)₂ LB films of 20 layers fabricated with various values of T_w (T_w = 5, 60, 90, 120,

Fig. 2. The surface pressure (π) vs. area per molecule (Å²) isotherms of the 2C₁₈-Au(dmit)₂ salt measured at 17 °C, where "waiting time (T_w)" = (a) 5 min, (b) 30 min, (c) 60 min, (d) 90 min and (e) T_w = 180 min.

Fig. 3. The infrared transmission spectra of the $2C_{18}$ -Au(dmit)₂ LB film fabricated with various values of T_w. Assignments of the key bands: 2918 cm⁻¹, CH₂ antisymmetric stretching, $v_a(CH_2)$; 2850 cm⁻¹, CH₂ symmetric stretching, $v_s(CH_2)$; 1055 cm⁻¹, C=S stretching, v(C=S).

and 180 min). Assignments for the infrared bands of the $2C_{18}$ -Au(dmit)₂ LB film have not yet been fully established, however, some key bands for the LB film are as follows: 2918 cm⁻¹, CH₂ antisymmetric stretching; 2850 cm⁻¹, CH₂ symmetric stretching; 1056 cm⁻¹, C=S stretching.

The band intensities of the CH₂ antisymmetric stretching and the CH₂ symmetric modes do not change significantly until $T_w = 60$ min, however, they fall off markedly in the T_w range of 60-90 min, reaching roughly the half of those in case $T_w < 60$ min. On the other hand, the band shapes of the CH₂ antisymmetric stretching mode and CH₂ symmetric one and the intensity ratio of these bands do not change as a function of T_w , suggesting that the mobility and the orientation of the alkyl chain of the $2C_{18}$ -Au(dmit)₂ LB film remain constant. The wavenumbers of the antisymmetric stretching and the CH₂ symmetric modes also do not change appreciably with changing T_w .

It should be also noted here that the infrared spectrum in the fingerprint region changes markedly as a function of T_w, as shown in Fig. 3. One of the distinct spectral changes is the intensity decrease of the C=S stretching band observed at around 1055 cm⁻¹. The band intensity of the C=S stretching mode compared with that due to the CH₂ antisymmetric and symmetric stretching modes drastically decreases with increasing Tw. Figure 4 shows the full width of the half height (FWHH) and the wavenumber of the C=S stretching mode, plotted against Tw. The FWHH of the band due to the C=S stretching mode is 14, 14, 17, 17, and 18 cm⁻¹ for $T_w = 5, 60, 90, 120,$ and 180 min, respectively, as shown by the open circles in Fig. 4; the FWHH increases appreciably in the T_w range of 60-90 min. Furthermore, the broadening is accompanied by the appreciable red-shift of the band, which is from 1055 to 1053 cm⁻¹, as shown in Fig. 4. The earlier works suggest that the broadening accompanied by the slight red-shift is due to the oxidation of the metal(dmit)₂ moiety [15]. In fact, the infrared spectrum of the 2C18-Au(dmit)2 salt oxidized by iodine coincides well with that of the as-deposited LB films fabricated in case $T_w = 180$ min. Thus, we consider that the chemical process proceeding at the

Fig. 4. The full width of the half height (FWHH) and the wavenumber of the C=S stretching mode, plotted against T_w .

Fig. 5. Typical AFM images of "single-layered" LB films of the $2C_{18}$ -Au(dmit)₂ salt deposited on hydrophobized Si wafers;(a) T_w=5 min, (b) T_w=180 min.

air/water interface is the oxidation of the $Au(dmit)_2$ moieties.

Although we utilize the electrochemical oxidation process for realizing the mixed-valence state $([Au(dmit)_2]^{-\delta}, 0 < \delta < -1)$ and we have obtained lateral conductivity as high as 10° - 10^{1} S/cm, an oxidation process already seems to start at the air/water interface. As shown in Fig. 3, broad bands also appear at 1240 cm⁻¹ and in the range greater than 1600 cm⁻¹ with increasing T_w. Our infrared absorption measurement using linearly-polarized light suggests that the transition dipole moments of the broad bands lie along the film plane and we postulate that the broad bands are the charge-transferred (CT) bands, although the macroscopic electrical conduction is not realized before the electrochemical oxidation. Studies are now in progress for determining the dopant species at the air/water interface.

3.3 The AFM images

Figure 5(a) shows a typical AFM image of the "single-layered" LB film deposited on an Si-wafer with $T_w = 5$ min. As shown by the profile along the solid line in Fig. 5(a), steps are in the range of 5-6 nm and the LB film seems to be composed of 6-nm-thick plate-like crystallites piled up to form a few layers. Figure 5(b) shows an AFM image of the LB film fabricated by a single deposition with $T_w = 180$ min. The surface of the film fabricated with $T_w = 180$ is relatively smooth compare to that fabricated with $T_w = 5$ min and the lateral sizes of the domains are getting smaller than those observed for the surface created with $T_w = 5$ min. It should be also noted here that there are some extremely flat surface, which can be ascribed to the bare substrate surface.

As we have already mentioned, the occupied area of the $2C_{18}$ -Au(dmit)₂ is too small in case $T_w = 5$ min if we assume a formation of a monomolecular film at the air/water interface. The occupied area, however, tends to increase with increasing T_w . Therefore, a relatively smooth 2D structure is assumed for the floating film formed with larger values of T_w . We consider that the structure of the film at the air/water interface, which depends on T_{w_2} affects the surface morphology of the films deposited on the hydrophobized Si-wafer substrates.

CONCLUSIONS

We have studied the structure of the LB films of the $2C_{18}$ -Au(dmit)₂ salt fabricated with various values of T_w by means of infrared spectroscopy and AFM. The infrared spectra in the fingerprint region suggest that the oxidation of the Au(dmit)₂ moiety already starts at the air/water interface before the electrochemical oxidation. The T_w -dependent spectral change is associated with morphological change of the surface of the LB films, which is from a quasi-3D structure to a 2D one. A comprehensive investigation including the correlation between electrical conductivity and the values of T_w is now in progress and will be published elsewhere.

ACKNOWLEDGMENT

We thank Prof. T. Nakamura, Prof. N. Wakayama, Dr. H. Iwamoto and Dr. R. Azumi for helpful guidance, comments and discussion. This work was supported in part by Grant-in-Aid for Scientific Research of Ministry of Education, Culture, Sports, Science and Technology (Japan) under Grant No. 12750019, and Kanagawa Academy of Science and Technology (Japan) under Grant No. 0012011.

REFERENCES

- [1]T. Nakamura, Handbook of Organic Conductive Molecules and Polymers, ed. H. S. Nalwa, (Wiley, New York, 1997) 728.
- [2] M. R. Bryce and M.C. Petty, Nature, 374 (1995) 771.
- [3] The physics and Chemistry of Organic Superconductors, ed. G Saito and S. Kagoshima (Springer, Heidelberg, 1990)
- [4]T. Nakamura, H. Tanaka, K. Kojima, M. Matsumoto, H. Tachibana, M. Tanaka and Y. Kawabata, Thin Solid Films, 179 (1989) 183.
- [5]L. M. Goldenberg, A. P. Monkman, C. Pearson, J. Gibson, M. R. Bryce and M. C. Petty, Thin Solid Films, 284-285 (1996) 512.
- [6]M. Horikiri, Y. F. Miura, Y. Araki, K. Ikegami and M. Sugi, Colloids and Surfaces A: *Physicochemical and Engineering Aspects*, **198-200** (2002) 657.
- [7]T. Kato, K. Ohshima and K. Suzuki, Thin Solid Films, 178 (1989) 37.
- [8] T. Kato, Langmuir, 6 (1990) 870.
- [9] T. Kato, Y. Hirobe and M. Kato, Langmuir, 7 (1991) 2208.
- [10] K. Ikegami and T. Nakamura, Jpn. J. Appl. Phys. 37 (1998) L550.
- [11] K. Ikegami, M. Lan and T. Nakamura, J. Chem. Phys. 112 (2000) 881.
- [12] T. P. Majumder and K. Ikegami, J. Chem. Phys. 116 (2002) 10428.
- [13]D. M. Taylor, S. K. Gupta, A. E. Underhill and C. E. A. Wainwright, Thin Solid Films, 210-211 (1992) 287.
- [14] S. K. Gupta, D. M. Taylor, A. E. Underhill and C. E. A. Wainwright, Synth. Met. 58 (1993) 373.
- [15] G. Steimecke, H. J. Sieler, P. Kirmse and E. Hoyer, Phosphorus & Sulfer 7 (1979) 49.
- [16] K. Tajima, M. Takahashi and K. Kobayashi, Thin Solid Films 178 (1989) 381.

(Received January 22, 2003; Accepted January 31, 2003)