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Recently, composite laminated structures have been applied to many structures of vehicles. Since 
interlaminar strength of composite laminated structures is relatively low, internal damage can be 
easily induced in service. In order to assess the integrity of the damaged structures, it is 
necessary to identify the size and position of the damage nondestructively. Natural frequency is 
often used to identify them. Though natural frequency is easy to measure, application to 
symmetrical structures is difficult because of symmetry of natural frequency change with respect 
to the position of damage. The present study proposes a determination technique of the damaged 
region of smart composite structures with piezoelectric patches using anti-resonance frequency. 
The change of anti-resonant frequency due to damage is derived mathematically, and the 
asymmetrical nature of anti-resonant frequency change is verified. Furthermore, determination of 
a damaged region for a double-end clamped beam is carried out, and it is shown that the 
technique is useful to determine the damaged region. 
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1. INTRODUCTION 
Recently, composite laminated structures have been 

applied to many structures of vehicles. Since 
interlaminar strength of composite laminated structures 
is relatively low, internal damage can be easily induced 
in service. In order to assess the integrity of the damaged 
structures, it is necessary to identify the damage 
nondestructively. Since natural frequency decreases due 
to damage and is easy to measure, natural frequency 
change is often used to identify damage [l-5]. However, 
natural frequency change of structures that have a 
symmetrical shape and symmetrical boundary conditions 
has symmetry with respect to the position of damage. 
That means damage identification of the symmetrical 
structures by the natural frequency change always has 
plural candidates of the position of damage. 

Inada et al. [6] showed for several composite beams 
that anti-resonant frequency change is useful to winnow 
the candidates down, but generality has not been proven 
yet. Though Inada et al. used an impact hanuner method 
to measure the frequency response, a smart structure 
system that mounts piezoelectric patches is desirable 
from the standpoint of health monitoring. 

In this study, the frequency response of a smart 
composite beam that has a PZT actuator and a PVDF 
sensor is derived, and anti-resonant frequency change is 
investigated. Based on the result, a determination 
technique of the region with a damaged segment is 
proposed. Furthermore, the method is applied to a 
double-end clamped beam to demonstrate the feasibility 
of the method. As a result, it is shown that anti-resonant 
frequency change is useful to determine the region with 
the damaged segment. 

2. ANTI-RESONANT FREQUENCY CHANGE 
Although natural frequency change due to damage in 
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composite laminates have been widely studied, little is 
known about anti-resonant frequency change due to 
damage in the composite laminates. Advantages of use 
of anti-resonant frequency for the smart composite 
structures are that no additional sensor and actuator is 
required to measure it, and that the change of 
anti-resonant frequency depends on the positions of the 
actuator and the sensor. Disadvantage of anti-resonant 
frequency is difficulty of accurate measurement. Taking 
account of them, anti-resonant frequency is suitable to 
an assistant parameter. 

For simple mass-spring models, anti-resonant 
frequency change due to damage, i.e. softening of spring, 
is easily derived [6]. Let us consider a 3 DOF 
mass-spring model as shown in Fig.l, for example. As 
an intact condition, spring constants k1=k2=k3=kt=k and 
mass m1=m2=m3=m. Mass m1 is actuated and 
displacement of mass m2 is measured. Natural 
frequency change and anti-resonant frequency change 
due to damage of the spring k2 or k3 is calculated. 
Damage is modeled as softening of spring k'=0.8k. 

XI X2 

Fig. I 3 DOF mass-spring model 

The results are shown in Table I. The results show that 
the changes of natural frequency due to damage are 
same for each damaged case but the anti-resonant 
frequency changes are different. In addition, the 
anti-resonant frequency does not change in case that k2 

is damaged, whereas the anti-resonant frequency 
decreases in case that k3 is damaged. This asymmetrical 
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nature is useful to determine the region with damage. 

Table I Natural frequency and anti-resonant frequency 

Position of Natural fr An . freq 
d 

equency tt-resonant uency 
amage 

1st: 0.765(klm)05 

None 2nd: 1.41(klmt5 (2klm)05 

3rd: 1.85(klml5 

1"1
: 0.759(klm)05 

kz 2nd: 137(k/m)o.s (2klm)05 

3nt: 1.77(klmt5 

1st: 0.759(klm)05 

k3 2nd: 1.37(klmt5 (1.8k/m)os 
3rd: 1.77(k/m)os 

In the following sections, anti-resonant frequency 
change of a smart composite beam with damage is 
investigated. 

2. FREQUENCY RESPONSE 
2.1 Model 

In order to demonstrate the feasibility of the proposed 
technique, an Euler-Bernoulli beam model is adopted. 
For simplicity, it is assumed that beam is homogeneous 
and damage is modeled as bending stifthess degradation. 
The configuration of the beam is shown in Fig. I. The 
beam is divided into three spanwise segments, and there 
is a damaged segment between two intact segments. 

A couple of PZT patches are mounted to accelerate 
the beam, and a PVDF patch is mounted to measure the 
vibration. 

patch 

Stiffness: E(x) 
Moment oflnertia: I 

Fig.2 Model configuration 

2.3 Frequency response function 
The dynamic equation of motion with external force 

F(x,t) is 

where p is density, A is the area of the cross section, El 
is the bending stifthess and w is the lateral displacement. 
The displacement w is expressed by using a natural 
modal function W,{x) as 

w= fw;(x);,(t) 
i=l (2) 

Derivation of the natural modal function of the damaged 
beam is described in Ref. [7]. Substituting eqn. (2) to 
eqn. (1) gives 

(3) 

The dynamic equation of motion for free vibration is 

(4) 

We may assume w=W,-eiox. Eqn. (4) becomes 

(5) 

Substituting eqn. (5) to eqn. (3) gives 

(6) 

After multiplying both sides by H), integrating the both 
sides from 0 to L gives 

(7) 

where 

q/t) = -
1

- [F(x,t)Wj(x)dx (8) 
pAKj 

Kj = [wix)W/x)dx 

by considering orthogonality. 
The actuation force by the PZT sensors is described as 

follows [8]. 

(9) 

where Meq is the equivalent moment induced by the PZT 
patches, and j(x) is the function of the positions of 
concentrated moments induced by the PZT patches. 

(10) 

where d31 is the piezoelectiric dielectric strain constant, 
Vnr is the applied voltage amplitude, tnr is the 
thickness of the PZT patches, Enr is Young's modulus 
of the PZT patches . .f{x) depends on the position of the 
PZT actuator and the damaged segment..f{x) in case that 
the damaged segment is not underneath the PZT actuator 
is 

(11) 

where o'(x) is the first derivative ofDirac delta function. 
j{x) in case that damaged segment is underneath PZT 
actuators can be similarly expressed. 

Eqn. (8) can be written 
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(10) 

Eqn. (7) in the case that the damaged segment is not 
underneath the PZT actuator becomes 

q = M .. (wi'(xA + 1=;{)-~'(xA -1=;{)) (11) 

i pAKi (w~ -w2
) 

For other cases, similar derivations hold. 
Substituting eqn. (11) to (2), displacement w becomes 

The PVDF output tjJ is described as follows [9]. 

where e31 is the piezoelectric constant and &31 is the 
dielectric constant. Therefore, Frequency response 
function G( m) is described as 

(w'(x + 
1=)-w'(x _1=)Xw'(x + 

1PYDF)-w'(x _IPVDF)) '"'1 1 .A:2 •A2 19 2 ' 9 2 

~pAx, ((j},'-(j}') 

(14) 

4. RESULTS AND DISCUSSION 
The changes of natural and anti-resonant frequencies 

of a double-end clamped beam are numerically 
investigated as an example of symmetrical structures. 

4.1 Natural frequency 
The beam has 200 mm length, 19 mm width and 1.45 

mm thickness. Longitudinal Young's modulus is 114GPa 
and density is 1466 kg/m3

• Damaged segment length aiL 
is 0.025, 0.05, 0.075 or 0.01. Stiffness is degraded at the 
damaged segment, and degradation ratio E lE is 0.95, 
0.9, 0.85 or 0.8. 

Fig. 3 shows the changes of the first five natural 
frequencies of the damaged beam (a/L=0.1, E'!E=0.8). 
Vertical axis is ith eigenvalue A.; normalized by~. which 
is A of an intact beam, and horizontal axis is the position 
of the damaged segment. In cases of other damaged 
segment length and/or stiffness degradation ratio, the 
shapes of the natural frequency changes are similar, and 
the amplitudes are almost proportionate to the damaged 
segment length and the stiffness degradation ratio. 

The changes of natural frequencies are symmetrical 
with respect to the center of the beam because the beam 
shape and boundary conditions are symmetrical with 
respect to the center of the beam. That means any 
damage identification methods using the natural 
frequency change indicates two candidates of the 
position of the damaged segment. 

0.996 

~ 0.992 

"'<! 
0.988 

0.984 

098 ~~--L-~~~-~~--L-~~ 

0 0.2 0.4 0.6 0.8 

Position of damaged segment xD IL 
(a/L=1J.l, E'IE==1J.8) 

Fig.3 Natural frequency changes due to damage 

4.2 Anti-resonant frequency 
In order to determine the half of the beam where the 

damaged segment exists, an actuator of PZT patches is 
mounted at 0.05L, and a PVDF sensor is mounted at 
0.45L. 0.5L is not suitable because several nodes of 
modal shapes exist at 0.5L. The sensor and actuator 
lengths are set to 0.1 L. Anti-resonant frequencies can be 
numerically calculated from eqn. (14). 

Fig. 4 shows the change of the first two anti-resonant 
frequencies (a!L=O.l, E'IE=0.8). Vertical axis is 
anti-resonant frequency between ith and jth natural 
frequency A-y'= (Oli}pAIE/)114 normalized by A'0, which 
is A' of an intact beam, and horizontal axis is the position 
of the damaged segment. The anti-resonant frequencies 
are obviously asymmetrical with respect to the center of 
the beam. In cases of other damaged segment length 
and/or stiffness degradation ratio, the shapes of the 
anti-resonant frequency change are similar, and the 
amplitudes are almost proportionate to the damaged 
segment length and the stiffness degradation ratio. 
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Fig.4 Anti-resonant frequency change due to damage 

Eqn. (14) includes natural modal functions, which are 
asymmetrical if a damaged segment exists in the either 
half of the beam. Thus the anti-resonant frequency 
changes are always asymmetrical. The degree of 
asymmetry depends on the geometrical shape and 
boundary conditions. 

For the double-end clamped beam, the anti-resonant 
frequency considerably decreases if damage exists 
beyond the sensor position, whereas the change of 
anti-resonant frequency is small if damage exists 
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between the actuator position and the sensor position. In 
addition, the average of the anti-resonant frequency 
changes is about twice as the average change of natural 
frequency. The nature of anti-resonant frequency change 
is similar to that of the mass-spring model mentioned in 
Sec.2. 

This nature is useful to determine the region with the 
damaged segment. A determination technique of the 
region with the damaged segment will be discussed in 
the next section. 

4.3 Determination of damaged region 
The anti-resonant frequency change between ith and 

jth natural frequency 4/A,y is normalized by the average 
of ith and i+ 1 th natural frequency change LVlv and 11/R,<H 
in order to eliminate the influence of damage length and 
stiffness degradation ratio. 

(15) 

In case of O<xrJL<0.5, all of normalized anti-resonant 
frequency changes Dy should be almost 0. In case of 
0.5< xrJL<l, either of Dys should significantly decrease. 
Dys of 160 cases were calculated; stiffness degradation 
ratio E'/E is 0.95, 0.9, 0.85 or 0.8, damaged segment 
length aiL is 0.025, 0.05, 0.075 o 0.1, and the position of 
the damaged segment xdL is 0.15, 0.25, ... 0.95. Table 
11 shows the first two normalized anti-resonant 
frequency changes D'l3 and D45• D12 and D34 do not 
appear in these cases. 

In order to determine a threshold of Dy, statistical 
analysis was carried out for Dy values. For O<xrJL<0.5, 
the average of Dy is 0.30 and the standard deviation is 
0.42. For 0.5<xrJL<I, the average of Dy is -2.41 and the 
standard deviation is 1.1. The threshold value D,h is set 

Table 11 Normalized anti-resonant frequency change 

:CD/L 

E'IE aiL 0.05 0.15 0.25 0.35 OA5 0.55 0.65 0.75 0.85 0.95 

D13 0.06 1.22 0.81 0.61 -0.18 -4.70 -3.49 -2.58 -0.27 ·2.21 
0.025 

D4.., -O.ll 0.08 0.29 0.84 0.10 -3.7& -1.28 -!.sS ·-!.88· ~L83 

D~3 0.18 0.93 0.85 0.66 -0.19 4.66 -3:47 -157 -0.53 -2.21 
0.05 

D-l-~ -0.26 0.10 0.29 0.73 O.Q.I ·3.64 ·-us -1.81 -1.88 ·.1.82 
0.8 

D2:. 0.36 0.56 0.88 0.69 -0.22 -4.57 ·2c$8 -0.87 -2.20 ·3.48 
0.075 

D"':- -0.45 0.13 0.30 0.73 -OW -3.53 -1.45 -1.84 :1.89 -LSZ 
D, 0.55 0.23 0.92 0.71 -0.27 -4.45 -3.49 -2.58 -i.l9 -2.19 

0.1 
D..j.~ -0.59 0.18 0.28 0.73 -0.15 -3.37 -t.55 -1.80 -1:90 -1.82 
D, 0.06 1.14 0.80 0.60 -0.19 -·1;69 -3:49 -2.58 -0.33 -1.2Z 

0.025 
D-~-~ -O.ll O.ll 0.18 0.81 0.09 -3.69 -1.19 .-1.88 -1.88 -1.83 

D2J 0.17 0.91 0.83 0.63 -0.21 -4.65 -3.48 .,2.58 -0.53 -1.21 
0.05 

D-1-5 -0.25 0.10 0.28 0.75 0.05 •3.64 -1.36 -U6' ·1.89 -!.82 
0.85 

D2'> 0.34 0.54 0.86 0.66 -0.23 4c55 -3.49 -1.59 -0.86 -2.11 
0.075 

D-1-:. ..0.42 0.13 0.28 0.73 -0.05 -3.52 -1:46 -1.84 -!.89 -1.82 

D~:. 0.53 0.11 0.89 0.68 -0.28 -4.43 -3.49 -2.60 -1.18 -2.20 
0.1 

D-1-5 -0.57 0.18 0.28 0.72 ..OJ5 -3.36 -1.56 -1.80 ·1.90 -1.82' 
D~~ 0.06 1.15 0.79 0.59 -0.19 -4.68 -3A9 -2.59 -0.31 -2.22. 

0.025 
D.t~ -O.ll 0.10 0.28 0.81 0.08 -3.69 ·1.29 -1.87 -1.89 ·L8l 
D, 0.17 0.82 0.81 0.61 -0.21 -4.63 -3.49 ·2.59 -0.60 -2.22 

0.05 
1>4:. -0.25 0.13 0.27 0.80 O.D4 -363 ·1.30 -L86 .!-'119 -1.83 

0.9 
D, 0.33 0.52 0.83 0.63 -0.25 -4.54. ·-3.49 .•2.1ill -0.86 -1.22 

0.075 
Do~:- -0.41 0.14 0.16 0.73 -0.03 -3.52 -1,46 -1.84 ·1.89 -1.82 
Dz3 0.52 0.20 0.85 0.64 -0.30 4.4U -3.'49 -2.~ -l.l8 -2.21 

0.1 
Do~5 -0.56 0.18 0.26 0.72 -0.16 -335 -1.'57 -1.30 -1.90 ,1.82 

D23 0.05 Ll5 0.78 0.60 -0.19 -4c.67 ·3.F -2.59 -0.30 ;2.22 
0.025 

Do~5 -O.ll 0.09 0.27 0.75 0.08 ,.3;68 -05 -1.87 -1.89 -L83 
1>23 0.16 0.84 0.79 0.60 -0.22 .-4.62 -3.48 -260 -0.57 -2.22 

0.05 
D..-5 -0.26 0.12 0.26 0.75 0.03 -3.61 :1.39 ,1.86 ,1.89 -1.83 

0.95 
D2~ 0.32 0.47 0.81 0.60 -0.26 -4:52' -2.62 -0.89 .•2.22 -3:50 

0.075 
Do~~ -0.41 0.16 0.25 0.76 -0.05 -3.50 '1.46 -1.84 -1.90 ·1.82 
])23 0.50 0.15 0.83 060 -0.31 4.39 -3.50 -2.63 -1.21 -2:23 

0.1 
D..-~ -0.53 0.21 0.24 0.76 -0.15 -3.3? -1.80 ·1.91 -1.82 -157 

to -1 by taking into account 3cr of Dys for O<xrJL<0.5. 
D1h is about half of the average in case of 0.5<xrJL<l. 
White cells in table I represent Dy>Dth, and gray cells 
represent Dy<Dth. 

All of Dys satisfY Dy > D1h in case of 0.5<xrJL<l. 
Either of Dys is Dy < D1h in case of O<xvfL<0.5. In 
other words, the region with the damaged segment can 
be accurately determined by the method. 

Since the asymmetrical nature of anti-resonant 
frequency change holds for any symmetric structures, 
we can apply the proposed method to any symmetrical 
composite structures. 

5. CONCLUSIONS 
Determination of a damaged region in symmetrical 

smart composite structures by anti-resonant frequency is 
proposed. The change due to damage is derived 
mathematically, and the asymmetrical nature of 
anti-resonant frequency is proved. Furthermore, 
determination of the damaged region in a double-end 
clamped beam is demonstrated. 
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