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A model of anN two-level system interacting with optical near fields is presented. Varying the 
initial conditions, we examine the dynamics of the electric dipoles of the system to predict a 
collective dipole oscillation, i.e., manifestation of a dipole-ordered state. Multiple pulses 
superradiantly emitted from such a state is also shown, and the origins of the phenomena are 
discussed, on the basis of a localized photon model using both semi-classical and quantum 
master equations. Brief comments on an application to a nanometric photonic component are 
given. 
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1. INTRODUCTION 
Nano-fabrication and its application to nanophotonic 

devices have been actively investigated, and special 
attention has been paid to optical near-field approaches 
because of their potential for ultra-high speed operation 
and miniaturization[!, 2]. It is now essential to clarify 
the inherent phenomena of optical near fields that are 
applicable to nano-fabrication and devices of a 
nanometer scale. In this context, a localized phton model 
has been proposed to predict a collective dipole 
oscillation of an N two-level quantum dots (QD) system 
after local manipulation of the initial quantum states [3]. 
However, the origin and features of this dipole-ordered 
state have not been fully explored. In this paper we 
report an intriguing phenomenon of multiple pulses 
superradiantly emitted from the dipole-ordered state on 
the basis of a localized photon model using both 
semi-classical and quantum master equations. We 
discuss its mechanism, features, and a possible 
nanophtonic application. 

2. MODEL HAMILTONIAN 
In this section we review the localized photon model 

which has been introduced in Ref. [3]. The system 
consists of N two-level QDs closely configured in a ring 
and localized photons coupled to each QD. The model 
Hamiltonian H can be written in the following 
form: 

H = H, + Hb +Hi"" (la) 
N N 

H, =EL a! a. + vL:( a!+lan + a!an+l ), 
n=l n=l (lb) 

n=l 
(le) 

N 

Hint = uL:( a!b. + a.b! ), 
n=l 

(ld) 
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where H. and Hb describe localized photons and 
excitons in QDs, respectively, and the intradot 
interaction between the localized photons and the 
excitons is denoted as H;111• Creation and annihilation 
operators for a localized photon and an exciton in each 

QD labeled by n are expressed as a~, an and bj, bn 

respectively. We apply the boson commutation 
relations to the localized photons as 

[all, a!.]= Jllll'' [all, all.]= [a!, a,;.]= 0. 
The excitons on a site obey the fermion 
commutation relations while excitons at different 
sites satisfy the boson commutation relations as 

[b11 ,b:.] = Jnn'(l- 2b,;bll}. 
The constant energies of the localized photons and 
excitons are assumed to be e = hm and E = liQ 

respectively. The hopping energy of the localized 
photons is represented as V= hv , and u = lig is for the 
conventional dipolar coupling between the localized 
photons and the excitons in the rotating wave 
approximation. We show a illustration of our system in 
Fig. 1. 

Fig. 1. Model of a quantum dots system 
interacting with localized photons. Each quantum 
dot interacts with the adjacent dots via localized 
photons. 
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3. DIPOLE-ORDERED STATE 
Using the Hamiltonian (1 ), we can obtain the 

second-order perturbation solution for temporal 
evolution of the dipole moment at the n-th site [3] 

( Pn (t)) = ( bn (t) + bJ (t)) as 

(P,(<J) :{P,(O+MO/-g'~ '/'~ l 
+g

2L L cj(t)Pn;Pm;(Pm(O)}(Wn(O)}. 

(2) 

Here Pn; is the diagonalization matrix element of the 
Hamiltonian of the localized photons H., and c{t) is the 
. d J t1me ependent coefficient depending on the exciton 

energy llQ and j-th eigenvalue tzA.1 of the 

Hamiltonian H.. The initial dipole moment and the 

population difference at site n are denoted as (Pn(O)) 

and {Wn(O))=(bJbn-bnbJ), respectively. From Eq. 

(2) it follows that the dipole distribution of the system at 
time t can be controlled by the initial population 
differences, which indicates a possibility of a local 
manipulation of dipole moment of an arbitrary site 
which results in a collective behavior of the dipoles, or 
in a dipole ordered state. 

On the basis ofEq. (2), we numerically investigate the 
dynamics of the dipoles depending on initial conditions. 
Figure 2 illustrates an intriguing non-radiative case, 

where the alternating dipoles (P,(O))=C-lt are 

initially set, i.e., the total dipole of the system is 
vanishing. 

(a) (b) (c) 
dipole 

i:=4.4 t=4.6 

site site ·~.l~ site 

Fig. 2. Temporal evolutions of the dipole moments 
for the system size N=8 at time (a) t=O, (b) t=4.4 
(c) t=4.6 with a unit of time Ill E. A unit of 
energy of our system is a typical excitation 
energy E of a quantum dot which is of the order 
of 1 eV. The vertical and horizontal axes 
represent the dipole and the site number, 
respectively. From (b) and (c), one can see that a 
collective oscillation is growing, which is 
originated from a local manipulation of the initial 
distribution of the population difference as 
(wn(O)) = -(Pn(O)) · 

Figurers 2(b) and 2(c) show that a collective oscillation 
of the dipoles is growing, i.e., a dipole-ordered state is 
manifested. The point of the dipole ordering is a local 
manipulation in which the sign of the population 
difference in each QD is set opposite to that of the 

corresponding diopole as (wn(O)) = -(Pn(O)). 

4. RADIATION PROPERTY 
We examine the radiation properties of the 

dipole-ordered state discussed above, for which we 
expect that intense radiation is emitted. For simplicity, 
we renormalize the localized photonic degrees of 
freedom into an effective Hamiltonian, Hon-cff, with the 
help of the unitary transformation [4, 5]: 

where the hopping energy of excitons is expressed as 

2 

Jnm = 2:-g-P,;Pmj · 
J Q-A.; 

In addition, a radiation field weakly interacting with the 
QDs is included in the system as a reservoir that makes 
the system dissipative. Then, equations of motion for the 
density operator PQo(t) of the QD system can be written 
as 

ap00 (t) . 
dt = -lLeffPQn(t) 

(4) 

+y([R_p00(t),R+] + [ R_, PQn(t)R+]). 

where Lerr is the Liouville operator associated with 
H0o.cm and the relaxation constant due to the 
elimination of the radiation field's degrees of freedom is 
denoted as y. The raising and lowering operators R± are 
defined, respectively in terms of the creation and 
annihilation operators of excitons in the QDs as 

R_ = L)n , R+ = .L>J . 
n n 

To study the emission properties of the radiation, we 
solve Eq. (4) and calculate the radiation intensity 

l(t) = (R+(t)R_(t)) A, 

where A is the Einstein's A coefficient which represents 
the probability of spontaneous emission of an excited 
single two-level system. We first solve Eq. (4) 
semi-classically without taking account of quantum 
correlations. This method has an advantage over the full 
quantum method to enable us to easily handle a 
relatively large number N system. However, it should be 
noted that the Dicke model shows superradiance from 
the initial condition of a perfect inversion population, 
while semi-classical descriptions in the same condition 
do not predict superradiance because the system has 
initiaJly no dipoles [6, 7]. We consider the case 
discussed in Sec. 3 that is initially non-radiative and 
subsequently dipole-ordered. Figure 3 shows that 
multiple pulses can be emitted from the system 
superradiantly (while the Dicke model shows no 
superradiance under such conditions), and indicates 
that the ordered total dipole moment of the system plays 
an important role in the oscillating radiation profile. 
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Fig. 3. Temporal evolution of the radiation 
intensity for the system size N=S obtained 
semi-classically without a quantum correlation 
among excitons. The solid curve is the result for 
the localized photon model while the dotted curve 
represents the result for the Dicke model. The 
initial condition is the same with Fig. 2. Three 
radiation peaks are seen for the dipole-ordered 
state when y=0.005 is used. The coupling strength 
of exciton-localized photon interaction 1s 
assumed to be weak, g=0.2. 

Considering the quantum correlation, we then 
solve Eq. ( 4) with the same initial conditions and 
system size N=4 to further investigate the origin 
and mechanism of the multiple pulse generation 
and quantum effects. As shown in Fig. 4, a 
supperradiant pulse is emitted in our case, while 
the Dicke model shows no superradiance under 
such conditions. 
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Fig. 4. Temporal evolution of the radiation 
intensity for the system size N=4 obtained with 
quantum correlations. The solid curve is the 
result for the localized photon model while the 
dotted curve represents the result for the Dicke 
model. The parameters are y=0.05 and g=0.5. 

The difference is due to the following fact: the 
dipole-ordered state appears in our case while it 
does not in the Dicke model. This is qualitatively 
predicted in the semi-classical approach (see Fig 
3). This feature is seen more clearly in Figs. 
5(a)-(b) when the coupling strength of the 
exciton-localized photon interaction is changed. 

Fig. 5. Temporal evolution of radiation intensity 
(upper) and the total dipole of the system (lower) 
obtained with quantum correlations. The solid 
curves are the result for the localized photon 
model while the dotted curves represent the result 
for the Dicke modeL The parameters and the system 
size are the same as in Fig. 4, except (a) g=O.S and (b) 
g=L2. 

As the coupling becomes stronger, the oscillation 
frequency of the total dipole moment increases 
because of the nonlinearity of the first term on 
the right hand side of Eq. ( 4) (see lower of Fig 5). 
It results in collective multiple pulse generation 
(see upper of Fig. 5). This phenomenon can be 
applied to a nanometric photonic source whose 
radiation intensity is proportional to the square of 
the total number of QDs [ 1]. 

Comparing the semi-classical results shown in Fig. 3 
with the quantum results in Fig. 5, we find a similar 
behavior of the radiation profiles between them. In Fig. 
6 we show the radiation intensities calculated (a) 
semi-classically and (b) with quantum correlation under 
the identical conditions. 

1i) JO .4!) so 

""" 

Fig. 6. Temporal evolution of the radiation 
intensity obtained (a) semi-classically without a 
quantum correlation among excitons and (b) 
with quantum correlations. We use the parameters 
y=0.05 and g=0.5 for the system N=4. 

Although the frequencies and the amplitudes are 
different, both results have qualitatively a similar 
tendency, that is, occurrence of multiple peaks. One can 
thus infer that when the total dipole moment is initially 
not zero the semi-classical treatment can qualitatively 
describe the radiation property of the system. Note that 
when there is initially no dipole moment, the quantum 
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fluctuation is essential as a trigger of radiation. On the 
other hand, without quantum fluctuation, the initial non 
zero dipole moments can develop an ordering process 
due to the non-linear dynamics of the system, and it 
leads to strong radiation from the system. Since the 
semi-classical approach does not require a large scale 
computation, it has an advantage that one can easily 
examine the system of a relatively large number of sites. 
Our discussion indicates that the semi-classical approach 
is powerful for qualitative investigation of radiation 
properties of a large system. However, for quantitative 
investigation and for classification of the approximation 
it is important to have a clear criterion for the 
applicability of the semi-classical approach. 

5. CONCUSION AND DISCUSSION 
We have predicted superradiant multiple pulse 

emission from the dipole-ordered state prepared by the 
exciton-localized photon interaction, and discussed the 
origin of the phenomenon, on the basis of the localized 
photon model using the dissipative master equation. One 
expects that this kind of phenomenon can be applied to a 
component of nanophotonics. The superradiant multiple 
pulse generation has been discussed in the Dicke model 
for a large system [8] and a Frenkel exciton system with 
dipole-dipole interaction [9]. In the former multiple 
pulses are the results of the stimulated emission and 
absorption of emitted photons stayed inside the large 
system. In the latter the oscillation in the radiation 
originates from the hopping of the excitation due to the 
dipole-dipole interaction. The origin of the multiple 
pulse generation in our system is similar to the latter 
case. However, our system includes a dipole-ordered 
state, and the mechanism is not completely same as that 
of Ref. [9]. Moreover, we have clarified that the multiple 
pulsation is a direct consequence of the ordering of the 
total dipole. 
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