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Dynamics of the exciton population in a quantum dot system coupled via optical near fields is theoretically 
investigated. We derive analytical solutions of the density matrix elements for one-exciton and two-exciton 
states. Based on the results, the transient response from a steady state induced by an applied light pulse is 
obtained as approximated solutions. The results show fast increase of the population due to the state filling 
of a sub-level and the oscillation behavior, which originate from coherence effects inherent in such a 
system. Moreover, slow population decay appears in the nanosecond regime, which is related to the effect 
of state filling and radiative relaxation. These characteristics well explain recent experimental data of 
time-resolved near-field spectroscopy, and clarify physics behind the phenomenon. 
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1. INTRODUCTION 
Optical near fields provide a powerful tool to control 

the states of nanometric matter as well as to observe 
nanometric structures. The localization property of the 
optical near fields, which is free from the diffraction 
limit of light, allows selective access to nanometric 
objects. This induces interesting and inherent effects, 
such as non-radiative energy transfer between optically 
(dipolar) forbidden levels [1]. We previously estimated 
energy transfer time via optical near-field interaction, 
which is less than 100 ps [2]. Such characteristic 
features inherent in the optical near fields open up a way 
to realize a novel type of nanophotonic functional 
devices. 

Since unidirectional energy transfer is an 
indispensable character for functional devices, we have 
considered a quantum dot system with intra-sublevel 
relaxation due to exciton-phonon interaction, where a 
few quantum dots are coupled via optical near-field 
interaction. In this paper, we assume a two-quantum dot 
system; one is two-level and the other is three-level. We 
theoretically derive the dynamics of exciton population 
in this system, and compare our results to data obtained 
in a recent time-resolved experiment [3]. Here, the key 
point is to control the exciton-population dynamics by 
applying a light pulse. In other word, transient dynamics 
from one-exciton states to two-exciton states determines 
the characteristics of device control. 

In the case of resonant two-level quantum dots, the 
optical near-field interaction induces nutation of the 
population, or coherent oscillation, which is analogous 
to the Forster process describing molecular excitation 
[4]. We theoretically show that fluctuations of 
luminescence intensity in the experimental results are 
related to the coherent oscillation between resonant 
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energy levels. Moreover the quantum coherence can 
realize fast energy transfer in the system. As another 
aspect, we demonstrate slower population decay that is a 
characteristic effect in two-exciton states. 

This paper is organized as follows. Section 2 is 
devoted to describing a theoretical model and equations 
of motion of the population in a coupled quantum dot 
system with analytical solutions for typical initial 
conditions. In Sec. 3, transient variation from 
one-exciton states to two-exciton states is investigated 
analytically, by comparing to the experimental results. 
Finally, concluding remarks are given in Sec. 4. 

QD-B 

Phonon reservoir 

Laser photon 
reservoir 

Fig. 1: A model of coupled quantum dot system. 
The reservoirs for phonons and free photons are 
introduced in order to represent the dissipation 
processes. 
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2. MODEL OF COUPLED QUANTUM DOT SYSTEM 
2.1 Equations of motion 

In order to evaluate luminescence intensity, we 
incorporate some reservoir systems as illustrated in Fig. 
1. The energy levels 11) A and 110) 

8 
are coupled to a 

free photon reservoir, while the level I 01) 
8 

is not 
because the transition with even total quantum number is 
dipole forbidden by assuming cubic quantum dots. 
Temporal evolution of the density operator in this 
system can be described on the basis of the 
Bom-Markov approximation [5] as 

~ (t) = _ _£[Ho+ H NF, P (t )] 
li 
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where [', YA· and y8 represent the relaxation 
constants of intra-sublevel transition via 
exciton-phonon coupling, and radiative transition 
in QD-A and B, respectively, which appear after 
tracing over both phonon and photon degrees of 
freedom. The strength of the optical near-field 
interaction is denoted as U. We have already derived 
the optical near-field interaction between two 
nanometric objects in our previous study [6] in which 
exciton-polariton degrees of freedom are eliminated. In 
this stage, we assume that phonon and photon 
reservoirs are in vacuum states, i.e., zero 
temperature. Therefore, a process of stimulated 
absorption and emission for phonons and photons 
is not considered. What we focus on in this paper 
is the transition dynamics from one-exciton state 
to two-exciton state, and vice versa, and thus, we 
introduce six bases to present the state of the 
system as depicted in Fig. 2. Taking the 
expectation values by using these bases, we can 
evaluate the population dynamics in this system. 

2.2 Dynamics driven from definite initial 
conditions 

Before discussing the transient dynamics, we examine 
the dynamics driven from definite initial conditions. 
First, we pay attentions to the dynamics for one-exciton 
states where the initial conditions are set as 
p l•.A• ( 0) = 1 and otherwise zero, where the subscripts 
are labeled as follows: I 0) and 11) are abbreviated 
asAan~ A',and loo)., fw).,andAim). asB, B', 
and B . In this case, two-exciton states are not excited, 
and the equations of motion are closed within 
one-exciton states. Analytical solutions in this problem 
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Fig. 2: Bases of the coupled quantum dot system 
with an exciton and two excitons. 

can be obtained rigorously, and the population of the 
level I I) A is given as 

PA· •• A .• (t) = exp[- r :rAt] 
(3) 

[ 
r-r ]' x cosh(Zt )+~sinh(Zt) , 

where Z = [ (r-rJ' /4-U' J'. We theoretically 

estimate that the optical near-field interaction U 
is much stronger than the radiative relaxation 
constant YA· When we assume the condition 

yA « U < [', Eq. (3) is reduced to a simple form 

as 

PA·B.A'B (t) = exp[ -2U( 2:} l (4) 

Apparently, the decay time on the level ll)A is 
determined by f'/( 4U2

), and the ratio in the round 
brackets in Eq. ( 4) represents a balance of the 
optical near-field interaction and intra-sublevel 
transition. Figure 3(a) shows a plot of Eqs. (3) 
and ( 4) as a function of time. In this figure, we 
can observe fast energy transfer from ll) A to 
liD) 

8 
in the order of 200 ps. 

On the other hand, when a two-exciton state is 
prepared in which the level 110) • is initially 
filled, it follows from Eq. (1) that intra-sublevel 
transitiOn is prohibited because of the 
Fermion-like feature of excitons. In this case, the 
excitation remains in the resonant level of either 
QD-A or B, leading to long decay time. The 
equations of motion for two-exciton states are 
completely decoupled from one-exciton states, 
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Fig. 3: Time evolution of the populations in 
QD-A. Initial conditions are set as follows: (a) 
completely excited on the level lt) A in QD-A 
and (b) simultaneously excited on the levels 
lt}. and IIO) •. The fixed parameters are set as 
u- 1=130 ps, r· 1=20 ps, YA- 1=5.9 ns, and YB- 1=2.1 
ns. The dotted curves in (a) and (b) represent 
exponential decay functions with decay 
constants of 2U/(2U/r) and r=rAI2+yB, 
respectively. 

and the analytic solutions are obtained by 
replacing the phonon relaxation constant r in Eq. 
(3) with zero and by multiplying the factor e -r.•. 
Although two-exciton states are connected to 
one-exciton states with the radiative transition, 
the lifetime of population in the level lt) A is in 
the order of 200 ps for one-exciton states as 
mentioned above. The population in two-exciton 
states has long decay time in the order of a few 
nanoseconds, while the population in one-exciton 
state is much smaller than that in two-exciton 
state. Therefore, the population of two-exciton 
state P.<a".A'" (t) is dominant in the 
luminescence-intensity measurement. The result 
is shown in Fig. 3(b ). Sinusoidal oscillation 
appears with an exponential decay whose decay 
constant is given by r=rAI2+YB· Our further 
interests are transient transitions between above 
two situations in order to investigate excitation or 

signal control toward to nanophotonic devices. 

3. TRANSIENT RESPONCE BY A LIGHT PULSE 
Suppose to apply a light pulse to excite the level 

110) 
8 

in QD-B in order to demonstrate a change from a 
steady state. For the purpose, we introduce a coupling to 
a laser photon reservoir. Then, the following terms 

11{[ Ap (t ),A' J + [A', p (t )A]} 

+Ap (t )[ Blp (t ),i11'] +[ill' ,p (t )ill]} 
(5) 

are added to Eq. (1 ), where 1J and Ap(t) are the 
rate of weak continuous excitation of QD-A to 
achieve a steady state, and that of strong pulse 
excitation for state filling in QD-B, respectively. 
These rates are proportional to the number of 
photons, and thus, the stimulated absorption and 
emission processes are involved. Here we assume 
incoherent excitations for simplicity. It would be 
valid if the period of the Rabi oscillation due to 
the laser pulse is longer than the applied pulse 
width. The light pulse couples one-exciton states 
to two-exciton states, and dgorous analytic 
solutions are hardly obtained. In the following, 
we show approximated solutions for the transient 
dynamics, separating the dynamics into two 
stages, an early stage and a later stage. 

The steady state before applying the light pulse can be 
obtained from Eqs. (1 ) and ( 5) by setting the left 
hand side as zero. The populations in the steady state 
under the condition of rA' Ya « u < r are expressed 
as 

11 r 11 
PABAB (o_) = --, PAa·.Aa· (o_ )= -r (- o), 

. 2U 2U 

1J 
PAa·AAoJ=-. 

. Ya 

(6) 

After the pulse excitation, each population is 
divided into two components. For example, the 
populations on the level lt) A are given by 
Plll'.An(OJ=RplB,lB( o_) and Pla,ln(o.) =(1-R)pAB.lB(o_)' 
where R denotes the changing rate from 
one-exciton states to two-exciton states. The 
other populations in Eq. (6) change in a similar 
way. 

In the early stage, two-exciton states have long 
decay time as mentioned in Sec.2, and thus, it is 
reasonable to be PAn',Aa·(t)z PAa'.Aa·(o.). From 
this approximation, equations of motion for 
one-exciton and two-exciton states are decoupled, 
and an approximated solution is obtained as 

""Y ( ) R { ( ) -r• PA"n',A'n' t = 2 PA"n,A'n 0_ e 

+pAB',AB' ( 0_ )(1- e -r•) 
+ [PA"n,A'B ( 0_ )cos( 2Ut) 

+i ~p A'n,~· ( 0 
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The second term in Eq. (7) represents an 
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Fig. 4: Transient population dynamics from a 
steady state by applying a light pulse. The square 
dots represent the data of time-resolved 
experiment with CuCl quantum cubes embedded 
in a NaCI matrix. Analytical solution is depicted 
as the solid curve. The appropriate constant is 
multiplied by the analytical solution in order to 
compare the experimental data. The parameters 
are set as u· 1=130 ps, r· 1=20 ps, YA· 1=5.9 ns, and 
rs" 1=2.1 ns. 

increase of the population that originates from the 
state filling of the level j10) 

8
, and the terms in 

the rectangular brackets denote the coherence 
effect depending on the initial population. 

On the other hand, in the later stage, the 
coherence in the two-exciton states disappears 
due to the radiative relaxation in both quantum 
dots. Therefore, the dynamics of the population 
follows a simple exponential curve as 

An approximated solution in the whole time 
can be given by multiplying the density matrix 
elements in the early and later stages as 

(9) 

In Fig. 4, the temporal evolution obtained from 
Eq. (9) is plotted, together with experimental 
data. In first order approximation of 17 (weak 
excitation), the population increases with an 
exponent of 2y8 , and oscillates with a frequency 
of 2U. The exponent reflects an increment due to 
continuous excitation and the components 
flowing into the lowest level j10) • in the steady 
state. It follows the result that the fast 
state-filling time observed in the experiment 
comes from the effect of nutation or coherent 
energy transfer. With the radiative relaxation, the 
coherence effect is lost, and the excitation is 
occupied on the resonant energy levels, which 
have long decay time as same as in two-exciton 

states. The slow decay observed around t = 2 ns 
originates from the competition of the population 
increase due to the state filling and decrease due 
to the radiative relaxation. Hence, our 
approximated solution well describes the 
experimental results and clarifies physics behind 
the phenomenon. 

4. CONCLUSIONS 
In order to confirm a possibility to control 

excitation transfer in a coupled quantum dot 
system, we have investigated transition from a 
steady state to transient state by applying a light 
pulse. An approximated analytic solution of the 
dynamics well explains characteristic features of 
recent experimental results. Both fast increase of 
population in the early stage and the oscillation 
behavior originate from coherent effect between 
two quantum dots with sub-levels to be filled. 
This state-filling effect and the radiative 
relaxation cause the slow decay in the stage of a 
few nanoseconds. As a result, signal transfer and 
control in such a quantum dot system can be 
achieved, and we expect that this is a promising 
technique for future nanophotonic devices. 
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