Preparation of Fullerodendrimers by the Use of a Diels-Alder Reaction

Yutaka Takaguchi, Yasushi Yanagimoto, Sadao Tsuboi, Takatsugu Wakahara,* Takeshi Akasaka*

Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka 3-1-1, Okayama, 700-8530, Japan Fax: 81-86-251-8903, e-mail: yutaka@cc.okayama-u.ac.jp

*Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan Fax: 81-298-53-6409, e-mail: akasaka@tara.tsukuba.ac.jp

Water-soluble fullerodendrimer was obtained by the use of a Diels-Alder reaction of C_{60} with a newly designed anthryl dendrimer under an extremely mild condition in 70% yield. It is notable that this system is quite useful for the synthesis of fullerodendrimer as well as the container of fullerene. Photoexcited state of a water-soluble fullerodendrimer capable to use as a singlet oxygen sensitizer was also elucidated. Key words: fullerodendrimer, fullerene, dendrimer, Diels-Alder reaction, anthracene

1. INTRODUCTION

Fullerene-based derivatives have been attracting a great interest in the field of structural and synthetic organic chemistry.¹ In particular, there is an increasing developing focus on applications for fullerene-functionalized dendrimers, fullerodendrimers, because of a variety of interesting features in supramolecular chemistry and material science.² However, the chemistry of dendrimer containing a C₆₀ core had been very much limited, because only a few efficient reactions in construction of fullerodendrimer were reported.^{1b,2-6} The elegant and pioneering studies reported by Fréchet,³ Hirsch,⁴ Diederich^{1b} and Nierengarten^{1b,5} are not so easy to be performed by almost chemist. Although a number of synthetic techniques have been devised, the [4+2] cycloaddition reactions was proved to be one of the most outstanding and expeditious methods for the functionalization of [60]fullerene to afford selectively the adducts on 6,6-ring junctions.^{1a,7} In this regard, several examples of reactions of C₆₀ with anthracene have been described.⁸⁻¹⁰ However, the formation of fullerodendrimers by the use of a Diels-Alder reaction of C_{60} with anthracene derivatives had never been described untill we reported.^{11,12} Recently, we have described the synthesis, photodimerization characterization and of а poly(amidoamine) dendron having an anthracene moiety at the focal point.¹³ During our studies on the reactivities of the anthracene bearing the dendritic substituent, we found that this molecule underwent the reversible Diels-Alder reaction with C₆₀. A fullerodendrimer composed of poly(amidoamine) building blocks is quite rare. This paper describes the facile synthesis and characterization of a poly(amidoamine) dendron having C_{60} at the focal point. This fullerodendrimer also represents a new class of water-soluble fullerene and acts as photosensitizer to generate singlet oxygen in water.

2. EXPERIMENTAL

Anthryl dendrimers 1a and 1b were prepared as described before.^{11,12} Synthesis of the fullerodendrimer 2a was shown in Scheme 1. A mixture of C_{60} (56 mg,

0.08 mM) and dendron 1a (133 mg, 0.08 mM) in 15 ml of o-dichlorobenzene was irradiated with a high-pressure mercury lamp ($\lambda > 300$ nm) at room temperature under a nitrogen atmosphere for 1 h. The initial purple color of the solution, due to unreacted C₆₀, became red as the reaction proceeded. After evaporation under reduced pressure below 60°C, the products were separated by HPLC (LC 918, Japan Analytical Industry, Co. Lid.) by the use of gel permeation columns (Jaigel 2H + 1H) and chloroform as eluent, to give 29 mg (21%) of the fullerodendrimer 2a as brown oil; selected data for 2a: ¹H NMR (toluene- d_8) δ 2.17 - 2.63 (m, 24H), 2.32 - 2.83 (m, 46H), 3.29 - 3.40 (m, 14H), 3.43 (d, J = 1.6 Hz, 2H), 3.48 (s, 24H), 3.48 - 3.57 (m, 8H), 6.91 - 7.95 (m, 9H); ¹³C NMR (CDCl₃) δ 32.7, 33.8, 34.0, 36.1, 37.1, 37.5, 49.2, 49.9, 51.65, 51.67, 52.2, 52.6, 52.9, 55.0, 59.0, 65.9, 74.7, 75.6, 123.7, 125.2, 126.8, 127.8, 128.4, 129.2, 136.5, 137.3, 138.8, 140.1, 141.39, 141.4, 141.6, 141.9, 142.0, 142.1, 142.59, 142.60, 142.62, 142.64, 142.9, 144.5, 144.6, 145.0, 145.18, 145.22, 145.33, 145.37, 145.40, 145.9, 146.1, 146.2, 146.4, 146.5, 152.4, 155.8, 159.52, 159.59, 172.2, 172.4, 173.1; LD-TOF-MS for $C_{141}H_{127}N_{15}O_{24}$: m/z calcd, 2414.62 [M]; found, 2414.22.

Preparatin of fullerodendrimer 2b was shown in Scheme 2. A mixture of C₆₀ (30 mg, 0.04 mM) and dendrimer 1b (126 mg, 0.08 mM) in 3 ml of o-dichlorobenzene was stirred at 45°C for 4 days under a nitrogen atmosphere. The initial purple color of the solution, due to unreacted C₆₀, became red as the reaction proceeded. After evaporation under reduced pressure below 60°C, the residue was separated by HPLC (LC 918, Japan Analytical Industry, Co. Ltd.) by the use of two gel permeation columns (Jaigel 2H + 1H) and chloroform as eluent, to afford 64 mg of the fullerodendrimer 2b as brown oil in 70% yield; selected data for **2b**: ¹H NMR (CDCl₃) δ 2.25 (t, J = 6.0 Hz, 8H), 2.32 - 2.36 (m, 27H), 2.46 (t, J = 6.0 Hz, 10H), 2.60 -2.68 (m, 28H), 2.72 - 2.79 (m, 6H), 3.12 - 3.21 (m, 12H), 3.59 (s, 24H), 5.79 (s, 1H), 5.83 (s, 1H), 6.95 - 6.97 (m, 2H), 7.38 - 7.43 (m, 2H), 7.69 - 7.72 (m, 2H), 7.75 -7.77 (m, 1H), 8.04 - 8.06 (m, 2H), 8.40 (s, 1H); ¹³C NMR (CDCl₃) & 14.1, 22.6, 29.3, 30.1, 30.3, 31.9, 32.6,

37.2, 49.2, 50.0, 51.7, 52.8, 58.0, 58.1, 72.3, 72.4, 125.5, 125.5, 125.9, 126.0, 126.1, 126.7, 127.5, 127.5, 129.6, 129.7, 130.0, 133.2, 136.8, 136.9, 136.9, 137.0, 139.8, 139.9, 141.3, 141.3, 141.6, 141.6, 141.7, 142.0, 142.0, 142.2, 142.2, 142.3, 142.3, 142.5, 142.9, 142.9, 143.1, 143.1, 144.6, 144.6, 144.6, 144.7, 145.1, 145.2, 145.3, 145.3, 145.4, 145.4, 146.1, 146.2, 146.4, 147.5, 147.5, 147.6, 147.6, 155.2, 155.3, 167.5, 170.8, 172.3, 173.0; LD-TOF-MS for $C_{139}H_{124}N_{14}O_{23}$: *m/z* calcd, 2357.55 [M]; found, 2356.73..

3. RESULTS AND DISCUSSION

Fullerodendrimer **2a** was synthesized by the use of a Diels-Alder reaction in 21% (photoirradiation) and 12% (heating) yield, respectively (Scheme 1). It is notable that fullerodendrimer **2a** was easily soluble in methanol, hence the unreacted C_{60} was easily removed by filtration after the reaction. The fullerodendrimer **2a** remained stable for several weeks when stored in a freezer (-10°C).

Scheme 1. A Diels-Alder reaction of C_{60} with anthryl dendrimer 1a.

The structure of 2a was confirmed by means of ¹H and ¹³C NMR, UV-vis, and laser desorption ionization time-of-flight (LD-TOF) mass spectroscopic analyses. The proton signals due to the anthracene moiety of 1a in CDCl3 at 8 7.42 (t, 2H), 7.50 (t, 2H), 7.96 (d, 2H), 8.22 (d, 2H), 8.41 (s, 1H) disappeared. The new multiplet peaks appeared at 6.91 - 7.95 ppm suggests the formation of the fullerodendrimer 2a. A methylene proton signal [δ 5.44 (d, J = 5.6 Hz, 2H)] of anthracene's 9-position of 1a in toluene-d₈ disappeared and a new peak appeared at δ 3.43 (d, J = 1.6 Hz, 2H) in toluene-d₈. These assignments are rationalized by the similarity of the chemical shifts of 2a to those of an anthracene mono-adduct of C₆₀ reported by Wang et al.⁹ Since the resonances characteristics of neutral anthracene protons were not observed in the NMR spectrum, this material is confirmed as a cleanly isolated adduct, not just a mixture of C_{60} and anthracene.

Figure 1 shows the ¹³C NMR spectrum of fullerodendrimer **2a**. The fullerodendrimer **2a** has 36 resonances in the sp² region of ¹³C NMR spectra, which indicate that the product has a C_s symmetry and that cycloaddition occurs at the 6,6-ring junction as for anthracene adduct of C_{60} reported so far.⁸⁻¹⁰ The chemical shifts of **2a** at δ 59.0, 65.8, 74.9, and 75.8 are reasonably assigned to the bridging sp³ carbons. The former two signals are due to the bridgehead carbons of the anthracene moiety.¹⁰ The latter two signals are ascribable to the quaternary bridgehead carbons of the C_{60} moiety.

Figure 1. ¹³C NMR spectrum of fullerodendrimer 2a.

The UV-vis spectrum of **2a** in toluene exhibited absorptions at 434 and 702 nm, in which the 434 nm band is known to be a typical absorption in the 1:1 adduct on the 6,6-ring junction⁹ as shown in Figure 2. The LD-TOF mass spectrum of **2a** by the use of negative-ion mode showed a molecular ion peak at m/z 2414.22 (**2a**, C₁₄₁H₁₂₇N₁₅O₂₄ requires m/z 2414.62).

Figure 2. UV-vis spectrum of fullerodendrimer 2a and prestine C_{60} .

Furthermore, during our studies on the reactivity of the anthryl dendrimers with C_{60} , we found that the yield was dramatically improved by changing the substituent on the anthracene moiety. In order to improve on the yield of fullerodendrimer which can be obtained by a Diels-Alder reaction, we refine upon the molecular design of anthryl dendrimer. First, a bulky dendritic substituent was moved from 9-position to 2-position, since such a huge substituent at a bridge head of [4+2]cycloadduct arisen from 9-substituted anthracene derivatives might not be preferred. Second, we used an electron-withdrawing group as a tether between an anthracene and a dendron wedge, because the cycloadducts of C_{60} with electron-deficient dienes were found to be quite stable.¹⁴ This newly designed anthryl dendrimer **1b** was allowed to react with C_{60} to give fullerodendrimer **2b** in 70% yield (Scheme 2). This unexpected efficient formation of fullerodendrimer **2b** is more than five times as high as the yield of a Diels-Alder reaction of dendron **1a**,¹¹ which is the same generation as **1b**. It is notable that fullerodendrimer **2b** easily dissolves into methanol, hence the unreacted C_{60} was easily removed by filtration after the reaction. The fullerodendrimer **2b** remains quite stable for several months when stored in a dark at room temperature.

Scheme 2. Facile synthesis of fullerodendrimer 2b by the use of a Diels-Alder reaction.

The structure of **2b** were confirmed by means of ¹H and ¹³C NMR, UV-VIS, and LD-TOF mass spectroscopic analyses. The anthracene proton signals [δ 7.45 – 7.49 (m, 2H), 7.99 – 8.01 (m, 4H), 8.42 (s, 1H), 8.56 (s, 1H), 8.73 (s, 1H)] of **2b** in CDCl₃ disappeared and new singlet peaks of methine protons appeared at 5.79 and 5.83 ppm, respectively, and aromatic protons [δ 7.38 – 7.43 (m, 2H), 7.69 – 7.72 (m, 2H), 8.04 – 8.06 (m, 2H), 8.40 (s, 1H)] were observed (Figure 3). This result consists with the formation of fullerodendrimer **2b**, of which C₆₀ was connected at anthracene's 9- and 10-positions.

Figure 3. ¹H NMR spectra of anthryl dendrimer

1b (top) and fullerodendrimer 2b (bottom).

The ¹³C NMR spectrum of fullerodendrimer **2b** shows 55 resonances in the sp² region, which indicate that the product has C_1 symmetry. The chemical shifts of **2b** at $\delta = 58.0, 58.1, 72.3, \text{ and } 72.4$ are reasonably assigned to the bridging sp³ carbons (Figure 4).

Figure 4. ¹³C NMR spectrum of fullerodendrimer 2b.

Figure 5 shows the UV-vis spectrum of **2b** in toluene exhibited absorptions at 433 and 704 nm, in which the former band is known to be a characteristic absorption band in the 1:1 adduct on the 6,6-ring junction⁶ as for anthracene adduct of C_{60} reported so far.⁸⁻¹¹ The LD-TOF mass spectrum of **2b** by the use of negative-ion mode without matrix showed a molecular ion peak at m/z 2356.73 (**2b**, $C_{139}H_{124}N_{14}O_{23}$ requires m/z 2357.55).

Figure 5. UV-vis spectrum of fullerodendrimer 2b.

In order to compare the redox behavior of fullerodendrimers 2a and 2b, their reduction potentials in V vs Ag/AgNO₃ were measured by the use of cyclic voltammetry in 1,2-dichlorobenzene with Bu₄NPF₆ (0.1 M) as a supporting electrolyte. The reduction potential $(E_{red}^{1} = -1.12 \text{ V})$ of fullerodendrimer 2b was similar to pristine C₆₀. In contrast to 2b, the fullerodendrimer 2a has more negative reduction potential $(E_{red}^{1} = -1.25 \text{ V})$ than C₆₀ $(E_{red}^{1} = -1.12 \text{ V})$ by 0.13 V.¹¹

It is notable that the fullerodendrimer **2a** and **2b** are readily soluble in acidic water (pH = 4.0). In order to clarify the utility of a water-soluble fullerene derivative, we investigated photophysical and photochemical properties of **2a** in water. The transient spectra observed by the laser excitation of **2a** in deacrated water exhibited the absorption peak at 700 nm, which is assigned to the absorption of the triplet excited state of **2a**, because the absorption peak is in good agreement with the triplet-triplet absorption of the C₆₀-adducts.¹⁵ From the decay at 700 nm, the triplet lifetime was evaluated to be 56 µs. On addition of O_2 , the decay rate increased, indicating that energy transfer from the triplet state of **2a** to O_2 takes place, producing singlet oxygen. From the decay in O_2 saturated water, the rate constant for energy transfer from the triplet state of **2a** to O_2 was evaluated to be 1.3 x $10^9 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$. The formation of singlet oxygen was confirmed by the observation of its emission at 1280 nm in D_2O , from which the quantum yield of singlet oxygen was estimated to be 0.45 after correcting the low O_2 concentration in D_2O compared with that in toluene used as a standard.¹⁶

It is well-known that an adduct of C_{60} and anthracene undergoes a retro-Diels-Alder reaction easily. In order to clarify the utility of anthracenyl dendrimers **1a** and **1b** as a container of fullerene, we investigated the possibility of the retro-reaction. Heating of fullerodendrimer **2a** in methanol at 45°C for 12 h gave the component molecules, C_{60} and dendron **1a**, in 89 and 100% yields, respectively. These finding surely reveal that the reaction is reversible; i.e., there is equilibrium between bond formation and dissociation reactions, which indicate that anthryl dendrimer **1a** is useful for the host molecule for [60]fullerene. On the other hand, fullerodendrimer **2b** is more stable than **2a**. It takes 9 days to obtain the component molecules under the same reaction conditions.

4. CONCLUSION

The results described herein show a facile and efficient route to the fullerodendrimer by the use of a Diels-Alder reaction of C_{60} and anthryl dendron. So far most of the constructions of fullerodendrimer were accomplished by means of a Hirsch-Bingel reaction, which needs CBr₄ and DBU as mediator. On the contrary, our approach, which is highly convergent without any reagent, highlights a useful preparation of fullerodendrimer under convenient reaction conditions. The present work might constitute a general method for rapid synthesis of a number of fullerodendrimers. It is notable that this system is quite useful for the synthesis of fullerodendrimer as well as the container of fullerene. Photoexcited state of a water-soluble fullerodendrimer capable to use as a singlet oxygen sensitizer was also elucidated. Further work is in progress to explore the applications and advantages of the reversible formation of fullerodendrimer.

ACKNOELEDGEMENT

This work was partly supported by Research Foundation for Materials Science, Saneyoshi Scolarship Foundation, and the Ministry of Education, Culture, Sports, Science and Technology (15750036, 15550036).

REFERENCES

- (a) "Fullerenes and Related Structures" Ed. by A. Hirsch, *Top. Curr. Chem.*, **199**, 1-235 (1999); (b) J. F. Nierengarten, T. Habicher, R. Kessinger, F. Cardullo, F. Diederich, V. Gramlich, J. P. Gisselbrecht, C. Boudon, and M. Gross, *Helv. Chem. Acta*, **80**, 2238 (1997); (c) F. Diederich, and C. Thilgen, *Science*, **271**, 317 (1996).
- [2] A. Hirsch, and O. Vostrowsky, *Top. Curr. Chem.*, 217, 51 (2001) and references therein.
- [3] (a) K. L. Wooley, C. J. Hawker, J. M. J. Frechet, F.

Wudl, G. Srdanov, S. Shi, C. Li, and M. Cao, J. Am. Chem. Soc., 115, 9836 (1993); (b) C. J. Hawker, K. L. Wooley, and J. M. J. Frechet, J. Chem. Soc., Chem. Commun., 925 (1994).

- [4] (a) X. Camps, H. Schöuberger, and A. Hirsch, *Chem. Eur. J.*, **3**, 561 (1997); (b) M. Brethreich, and A. Hirsch, *Tetrahedron Lett.*, **39**, 2731 (1998).
- [5] Y. Rio, J.-F. Nicoud, J.-L. Rehspringer, and J.-F. Nierengarten, *Tetrahedron Lett.*, 41, 10207 (2000).
- [6] (a) Y. Murata, M. Ito, and K. Komatsu, J. Material Chem., 12, 2009 (2002); (b) V. J. Catalano, N. Parodi, Inorg. Chem., 36, 537 (1997).
- [7] For recent reviews, see: (a) "The Chemistry of Fullerenes", Ed. by R. Taylor, World Scientific, London, (1995). (b) "Fullerenes: Chemistry, Physics and Technology", Ed. by K. M. Kadish, and R. S. Ruoff, John Wiley and Sons, New York (2000).
- (a) Y. Murata, N. Kato, K. Fujiwara, and K. [8] Komatsu, J. Org. Chem., 64, 3483 (1999); (b) K. Mikami, S. Matsumoto, T. Tonoi, Y. Okubo, T. Suenobu, and S. Fukuzumi, Tetrahedron Lett., 39, 3733 (1998); (c) P. Curz, A. Hoz, F. Langa, B. Illescas, and N. Martín, Tetrahedron, 53, 2599 (1997); (d) B. Kräutler, T. Müller, J. Maynollo, K. C. Kratky, P. Ochsenbein, Gruber. Schwarzenbach, and H.-B. Bürgi, Angew. Chem., Int. Ed., 35, 1204 (1996); e) K. Komatsu, Y. Murata, N. Sugita, K. Takeuchi, and T. S. M. Wan, Tetrahedron Lett., 34, 8473 (1993).
- [9] J. A. Schlueter, J. M. Seaman, S. Taha, H. Cohen, K. R. Lykke, H. H. Wang, and J. M. Williams, *Chem. Commun.*, 972 (1993).
- [10] M. Tsuda, T. Ishida, T. Nogami, S. Kurono, and M. Ohashi, Chem. Commun., 1296 (1993).
- [11] Y. Takaguchi, T. Tajima, K. Ohta, J. Motoyoshiya, H. Aoyama, T. Wakahara, T. Akasaka, M. Fujitsuka, and O. Ito, *Angew. Chem. Int. Ed.*, 41, 817 (2002).
- [12] Y. Takaguchi, Y. Sako, Y. Yanagimoto, S. Tsuboi, J. Motoyoshiya, H. Aoyama, T. Wakahara, and T. Akasaka, *Tetrahedron Lett.*, 44, 5777 (2003).
- [13] Y. Takaguchi, T. Tajima, K. Ohta, J. Motoyoshiya, H. Aoyama, Chem. Lett., 1388 (2000).
- [14] (a) A. Mori, Y. Takamori, and H. Takeshita, *Chem. Lett.*, 395 (1997); (b) H. Takeshita, J.-F. Liu, N. Kato, A. Mori, and R. Isobe, *J. Chem. Soc., Perkin Trans. 1*, 1433 (1994); (c) M. Ohno, T. Azuma, S. Kojima, Y. Shirakawa, and S. Eguchi, *Tetrahedron*, 52, 4983 (1996); (d) K.-F. Liou, T.-Y. Hsiao, and C.-H. Cheng, *Fullerene Sci. Technol.*, 6, 351 (1998); (e) M. Ohno, Y. Shirakawa, and S. Eguchi, *Synthesis*, 1812 (1998); (f) S. Mori, T. Karita, K. Komatsu, N. Sugita, and T. S. M. Wan, *Synth. Commun.*, 27, 1475 (1997); (g) C.-F. Yen, R. K. Peddinti, and C.-C. Liao, *Org. Lett.*, 18, 2909 (2000).
- [15] C. Luo, M. Fujitsuka, A. Watanabe, O. Ito, L. Gan, Y. Hung, and C.-H. Hung, J. Chem. Soc. Faraday Trans., 94, 527 (1998).
- [16] J. W. Arbogast, and C. S. Foote, J. Am. Chem. Soc., 113, 8886 (1991).

(Received October 9, 2003; Accepted November 20, 2003)