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An efficient and real space method is proposed for calculating the electron densities in nonperiodic,
nanoscale systems using Cartesian coordinates in three dimensions. Instead of solving Schrddinger
eigenvalue problems, “Heaviside-Fermi level operator” method (density matrix method) is used in an
iterative procedure, with a separable nonlocal form of pseudopotential and a fast method for solving
Poisson’s equation. Example calculations of the electronic structures for C, and O, di-atomic molecules are
presented. The present method can be applied for the tight-binding (TB) parametrizations and they are used
for the calculations of large scale systems.
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1. INTRODUCTION d <

Significant progress has been made in the last decade in e ,,X_Z_;NC"‘W(’C" +nhey )t ,,;,Vcn’\y(x" vy )
the computational materials science by density functional “oml
theory (DFT) [1-10]. The DFT uses the density of a + Y, Cn¥(x,3,7,+nh)
many-electron system as the fundamental quantity to be e
calculated rather than the wave functions. The plane wave +[ o (ch,y,,zk)+ Ve (x,,yj, Zk)+ Vee (J‘“J’j, Z:,)]‘*’(x,—,}’,, zl:)
basis allows us to use the efficient FFT algorithm in _ E'{’(x 2 )
three-dimensional (3D) Cartesian coodinates for periodic ) )
and non-periodic systems using the superceli technique, ..
which th:S certainy 1imitationu;g and dlpi%rculties. Inqthe In the above eq.(1), Vi?,,, Vg and Vycare the ionic, Hartree
present study, an efficient and real space method is and exchax}ge cox_relauon potentlals, r_espectlvely._
proposed for calculating the electron densities in The key mg_redlent of this approach is the combined use
nonperiodic, nanoscale systems using Cartesian of the finite eclement method (FEM) and the

coordinates in three dimensions [1-8]. Speciffically, we Heaviside-Fermi leve'l operator using a pseudopotgnti:_ﬂ
use the discrete variable representations (DVR) scheme treatment [11]. In this approach the electron density is
in the whole stages of the present formulations, so-called expressed as

the finite element method (FEM). Instead of solving

Schrodinger eigenvalue problems, “Heaviside-Fermi r)= v =S(r|H{E,-H,]p,
level operator” method (density matrix DM method) is Ar) §Z|WM( )‘ ;< ' ( (<)
used in an iterative procedure. A separable nonlocal form

of Haman, Schlitter and Chiang (HSC) pseudopotential where

[11] and a fast method for solving Poisson’s equation are

also used for performing efficient calculations. Example H(E,-H,)= lim f an(E, )T, (H). (3)
calculations of the electronic structures for C, and O, B )T N g TN

diatomic molecules are presented. For large molecules,

one can perform much faster calculations by using the TB In the above eq.(2), £ denotes the spin porlarization,
par:;n(eimzatmns derived from the present DF-FEM-DM £= ( ot -p ) / p, and Eg the Fermi energy.

method.

r>’ )

In the present formulation, the normalized (scaled)

2. PRINCIPLE OF CALCULATIONS quantities are used
In the present study, a new approach [7] is used to ) 4

calculate the electronic density within the density ao(Er)='l(¢x,‘7’)’ an(Ep)=——sin(n¢EF)( )

functional theory (DFT) in real space that bypasses z z

solving the Kohn-Sham (KS) equation. In the standard

treatments, the kinetic energy operators in the AT

Hamiltonian are replaced by the finite difference ’

operators as: ‘
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To derive the electrostatic Coulomb potentials, we use a
fast method with the fast Fourier transform (FFT’s) for

nonperiodic systems without having to enlarge the system.

The procedure is to transform the static potential so that
the boundary condition of Poisson’s equation is of the
Dirichlet type: The electro-static Coulomb potential
outside the electronic densities region is expanded in
terms of the multiple electric moments Qy as

6= ‘—:—’gzl%dr':47r2&"_wl %)

Sol+1 A7

O = [ 109" p@)dr, @®)

where ¥, (9,¢) are sherical harmonics. Then, the

electric potential in the meshed space is solved as
follows:

Vig=—4np 9

¢(l‘) boundary:: ¢0 (l') (10)

The remaining potential Sg(r) resulting from the

charge density difference between the true charge density
p(r) and p (r) (originating from ¢ (r))is calculated
by using the FFT:

Op(r) = g(r) - ¢, (r) (11)

S§(r)= p(r)+ %quﬁ,(r) (12)
T

X o Y knz

Nac Nay wNa o (13

X oo TRY kzrz
NAx NAy NAz’

84()= 64, sin

op(r) = z 3pm sin
nmk

where
G, = s | (14)
pi(n)+ p}(m)+ pi(k)
#(1) = 5p(r) + ¢, (r) (15)

/+3
H0) =470 erf (D) 475 e T "“f,ﬂ””{ rf(f)]
a6

In the discrete variable representation (DVR), the HSC
pseudopotential can be discretized in the separable
nonlocal form [11,12] as

A, | Fiim)( Fiim|av, a7

VOR oy
oo uz,m INAOY)

A EITAINAT A (8)

Here, it should be noted that the above eqs.(17) and (18)
are evaluated by using the interpolation function f,

with Gaussian integration weight g, and orthonormal

pseudo wave functions g, (r) as

19

‘I—Z% Re.(r), (19)

RYFING..J 0)
%(")—r NArsm(NAr}

The total energy of the system can be given in the
standard formula

=X [ F e [30, 400 (p.8)-5.(£.8)]
z.zZ

1 wly
u(pt’ ) Zm; R

E[p]= 2.2 o

+3, fares [e.(p.8)

@1
where the first term, one-electron energy, is calculated by
using the FEM and Heaviside density matrix method.

N
PRI =§jdr<f]H, [0,k (Es -, [ p,.€])7)

(22)

3. RESULTS AND DISCUSSIONS

The dimension of mesh spacing used for the FEM
analysis is shown in Fig. 1, for diatomic molecules like C,
and O, The uniform grid spacings of h=0.2~0.4a.u
(he=hy=h,=h) are used.

Fig.1b shows the electrostatic Coulomb potential, due
to uniform charge distributions of two spherical regions
of our test calculations in FEM. For the finer meshs than
h=05, one can get fairly good agreement of the
electrostatic potentials compared with the results of the
exact calculations (dot-dashed curve).

We compare in Fig.2 the electronic charge densities
o(r) and one-electron energy eigenvalues calculated by

FEM for electrons in a box (rectangular paralielepiped) of
134, x13a,x15q, dimension, with those by the exact

calcultions. One can see in Figs.2a and 2b that the FEM
calcultions are in good agreement with trhe exact
calculations.

We present in Table 1 the calculated spectroscopic
constants for diatomic molecules C, and O, by the
present method in comparison with those of other
calculations and experimental results. The present
calculation results of equilibrium bond lengths, binding
energies D, (the energy difference between the dimers at
the equilibrium and their constituent atoms) and
vibrational frequencies . are in good agreement with
other calculations. However, the binding energies are
substantially larger than the experimental values. This
overbinding may result from the crudeness of the mesh
spacing or inadequacies in the LDA and the
pseudopotential sued in the present calculations.
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Fig.1 Dimensions of mesh spacing used for the FEM
analysis (a), and calculated electrostatic Coulomb
potential by FEM with h=0.5 (solid curve).
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Fig.2 The electronic charge densities p(r) calculated

by FEM with the uniform mesh of h=0.5 for electrons
confined in the box of 13a,x13a,x15a, are presented

in (a), in comparison with those of the exact calculations.
The energy eigenvalues are shown in b), in comparison
with the exact values. The numbers in parentheses are the
degeneracy of the corresponding eigenstates.

Fig.3 Atomic configurations of Siss clusters, stable (a)

and metastable (b) structures.

In Fig3, we present the calculated atomic
configurations of Siys clusters, stable tetrahedron
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structure (a), and metastable structure of stacked benzen
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Fig4 Quasi-1D structure of (Sig), nanotube: (a)

unrelaxed, (b) relaxed, and locally stretched (c) structures.

All structures are relaxed under the condition that
uppermost and lowest 6-membered rings are fixed.

Table.1 Spectroscopic Constants for Diatomic Molecules
Cz and 02

G, O,
r(au)
Experiment 2.35 2.28
present 244 2.40
Other method®  2.343 2.39
D(ev)
Experiment 6.3 5.2
present 8.3 8.55
Other method® 8.2 8.5
me(cmul)
Experiment 1860 1580
present 1920 1620

Other method®* 1923 1625

a) D. J. Kouri, Y. Huang and D. K. Hoffinan, J. Phys.
Chem., 100 (1996) 7903; Experimantal results are from
Ref 15,

-like rings (b). The structures of the Siys clusters have
been studied extensively in conjunction with the chemical
reactivity e.g., with ammonia and methanol molecules
[13]. In view of the stability of the stacked benzene-like
rings, we have calculated the atomic structures of (Sig),
“nanotube”, under the condition that the uppermost and
lowest 6-membered rings are fixed, and presented the
results in Fig4. One can see that there are little
differences between the unrelaxed (Fig.4a) and relaxed

(4b) structures respectively, indicating the stability of the
“ nanotube” structures. Fig. 4c shows the stretched
atomic configuration (about 10%) under tension and the
electronic conversions from sp® to sp> hybrids can be
observed in the heavily distorted region. We have also
found that the tensile strength of “Si nanotube” is
sufficiently high ~100GPa, comparable to the
compressive strength of carbon nanotube.

We are currently studying the electronic transport
properties of “Si nanotubes”, as in the recent calculations
of nanoelectromechanical effects of carbon nanotubes
[14].

4. CONCLUSIONS

The new DF-FEM-DM method is presented for
calculating the electronic structures in nonperiodic,
polyatomic systems using Cartesian coordinates in three
dimensions. The density matrix method and
spin-density-functional theory are used, rather than
solving the Schrodinger eigenvalue problem. A fast
method for solving Poisson’s equation in nonperiodic
systems, and a separable nonlocal form of norm
conserving pseudopotentials (with no spurious states and
no PW cut-off problem) have been employed. Example
calculations are presented for smail di-atomic molecules
like C; and O,. The present scheme also allows us to
derive the tight-binding (TB) parameters which can be
applied to calculations of the large scale systems.
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