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An efficient and real space method is proposed for calculating the electron densities in nonperiodic, 
nanoscale systems using Cartesian coordinates in three dimensions. Instead of solving SchrOdinger 
eigenvalue problems, "Heaviside-Fermi level operator" method (density matrix method) is used in an 
iterative procedure, with a separable nonlocal form of pseudopotential and a fast method for solving 
Poisson's equation. Example calculations of the electronic structures for G and 0 2 di-atomic molecules are 
presented. The present method can be applied for the tight-binding (TB) parametrizations and they are used 
for the calculations of large scale systems. 
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1. INTRODUCTION 
Significant progress has been made in the last decade in 

the computational materials science by density functional 
theory (DFT) [1-10]. The DFT uses the density of a 
many-electron system as the fundamental quantity to be 
calculated rather than the wave functions. The plane wave 
basis allows us to use the efficient FFT algorithm in 
three-dimensional (3D) Cartesian coodinates for periodic 
and non-periodic systems using the supercell technique, 
which has certain limitations and difficulties. In the 
present study, an efficient and real space method is 
pro"osed for calculating the electron densities in 
nonperiodic, nanoscale systems using Cartesian 
coordinates in three dimensions [1-8]. Speciffically, we 
use the discrete variable representations (DVR) scheme 
in the whole stages of the present formulations, so-called 
the finite element method (FEM). Instead of solving 
Schrodinger eigenvalue problems, "Heaviside-Fermi 
level operator" method (density matrix DM method) is 
used in an iterative procedure. A separable nonlocal form 
of Raman, Schl11ter and Chiang (HSC) pseudopotential 
[11] and a fast method for solving Poisson's equation are 
also used for performing efficient calculations. Example 
calculations of the electronic structures for C2 and 0 2 

diatomic molecules are presented. For large molecules, 
one can perform much faster calculations by using the TB 
parametrizations derived from the present DF-FEM-DM 
method. 

2. PRINCIPLE OF CALCULATIONS 
In the present study, a new approach [7] is used to 

calculate the electronic density within the density 
functional theory (DFT) in real space that bypasses 
solving the Kohn-Sham (KS) equation. In the standard 
treatments, the kinetic energy operators in the 
Hamiltonian are replaced by the ftnite difference 
operators as: 
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(1) 
In the above eq.(l), V;ofb VH and Vxc are the ionic, Hartree 
and exchange correlation potentials, respectively. 

The key ingredient of this approach is the combined use 
of the finite element method (FEM) and the 
Heaviside-Fermi level operator using a pseudopotential 
treatment [11]. In this approach the electron density is 
expressed as 

p(r)= LLI1f1.,(r)l2 = I;(riH(Er-H.-[p,q])lr), (2) 
" ' " 

where 

(3) 

In the above eq.(2), ~ denotes the spin porlarization, 
q = (P+ _ p- )1 p, and Ep the Fermi energy. 

In the present formulation, the normalized (scaled) 
quantities are used 
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To derive the electrostatic Coulomb potentials, we use a 
fast method with the fast Fourier transform (FFT's) for 
nonperiodic systems without having to enlarge the system. 
Th~ procedure is to transform the static potential so that 
the boundary condition of Poisson's equation is of the 
Dirichlet type: The electro-static Coulomb potential 
outside the electronic densities region is expanded in 
terms of the multiple electric moments <&. as 

r/J (r) = f p(r') dr' = 4tr" Qlm ~m(O,rp) (7) 
> lr - r'l i;;' 21 + 1 r1

+
1 

' 
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where Y bn ( 8, ~) are sherical harmonics. Then, the 

electric potential in the meshed space is solved as 
follows: 

(9) 

(10) 

The remaining potential o~(r) resulting from the 

charge density difference between the true charge density 
p(r) and p0 (r) (originatingfrom r/J

0
(r))iscalculated 

by using the FFT: 

orp(r) = r/J(r) -r/Jo(r) (11) 

(12) 
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where 
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In the discrete variable representation (DVR), the HSC 
pseudopotential can be discretized in the separable 
nonlocal form [11,12] as 

(17) 

(18) 

Here, it should be noted that the above eqs.(17) and (18) 
are evaluated by using the interpolation function h 
with Gaussian integration weight mk and orthonormal 

pseudo wave functions rpk (r) as 

(19) 

(20) 

The total energy of the system can be given in the 
standard formula 

Ev [Pv]= LaL; &a.n-LaJdi'p:D9lv+Vu,a(P,q)-&u(P,q)] 

+ LaJdrp;[e,(p,q)-eu(p,,O)+~L;.j z~,). 
(21) 

where the frrst term, one-electron energy, is calculated by 
using the FEM and Heaviside density matrix method. 

L:fs"·" = L:f m:(riH"[Pv,;]h(EF -H" [pv,;])lr) 
" . " 

(22) 

3. RESULTS AND DISCUSSIONS 
The dimension of mesh spacing used for the FEM 

analysis is shown in Fig.1, for diatomic molecules like C2 
and 0 2. The uniform grid spacings of h=0.2-Q.4a.u 
(hx=hy=hz=h) are used. 

Fig.l b shows the electrostatic Coulomb potential, due 
to uniform charge distributions of two spherical regions 
of our test calculations in FEM. For the fmer meshs than 
h = 0.5 , one can get fairly good agreement of the 
electrostatic potentials compared with the results of the 
exact calculations (dot-dashed curve). 

We compare in Fig.2 the electronic charge densities 
P( r) and one-electron energy eigenvalues calculated by 

FEM for electrons in a box (rectangular parallelepiped) of 
13a

0 
x 13a

0 
x 15a

0 
dimension, with those by the exact 

calcultions. One can see in Figs.2a and 2b that the FEM 
calcultions are in good agreement with trhe exact 
calculations. 

We present in Table 1 the calculated spectroscopic 
constants for diatomic molecules C2 and 0 2 by the 
present method in comparison with those of other 
calculations and experimental results. The present 
calculation results of equilibrium bond lengths, binding 
energies De (the energy difference between the dimers at 
the equilibrium and their constituent atoms) and 
vibrational frequencies m. are in good agreement with 
other calculations. However, the binding energies are 
substantially larger than the experimental values. This 
overbinding may result from the crudeness of the mesh 
spacing or inadequacies in the LDA and the 
pseudopotential sued in the present calculations. 
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Fig. I Dimensions of mesh spacing used for the FEM 
analysis (a); and calculated electrostatic Coulomb 
potential by FEM withh=0.5 (solid curve). 
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Fig.2 The electronic charge densities p ( r) calculated 

by FEM with the uniform mesh of h=0.5 for electrons 
confmed in the box of 13a

0 
x 13a

0 
x 15a

0 
are presented 

in (a), in comparison with those of the exact calculations. 
The energy eigenvalues are shown in b), in comparison 
with the exact values. The numbers in parentheses are the 
degeneracy of the corresponding eigenstates. 

(a) 

(b) 

Fig.3 Atomic configurations of Si45 clusters, stable (a) 
and metastable (b) structures. 

In Fig.3, we present the calculated atomic 
configurations of Si45 clusters, stable tetrahedron 
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structure (a), and metastable structure of stacked benzen 
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Fig.4 Quasi-lD structure of (Si6)n nanotube: (a) 
unrelaxed, (b) relaxed, and locally stretched (c) structures. 
All structures are relaxed under the condition that 
uppennost and lowest 6-membered rings are fixed. 

Table.1 Spectroscopic Constants for Diatomic Molecules 
C2 and02 

Cz Oz 
re(au) 

Experiment 2.35 2.28 
present 2.44 2.40 
Other method" 2.343 2.39 

De(ev) 
Experiment 6.3 5.2 
present 8.3 8.55 
Other method" 8.2 8.5 

ro.(cm"1
) 

Experiment 1860 1580 
present 1920 1620 
Other method• 1923 1625 

a) D. J. Kouri, Y Huang and D. K. Hoffinan, J. Phys. 
Chem., lOO (1996) 7903; Experimantal results are from 
Ref.l5. 

-like rings (b). The structures of the Si45 clusters have 
been studied extensively in conjunction with the chemical 
reactivity e.g., with ammonia and methanol molecules 
[13]. In view of the stability of the stacked benzene-like 
rings, we have calculated the atomic structures of (Si6)n 
"nanotube", under the condition that the uppermost and 
lowest 6-membered rings are fixed, and presented the 
results in Fig.4. One can see that there are little 
differences between the unrelaxed (Fig.4a) and relaxed 

( 4b) structures respectively, indicating the stability of the 
" nanotube" structures. Fig. 4c shows the stretched 
atomic configuration (about 10%) under tension and the 
electronic conversions from sp2 to sp3 hybrids can be 
observed in the heavily distorted region. We have also 
found that the tensile strength of "Si nanotube" is 
sufficiently high -lOOGPa, comparable to the 
compressive strength of carbon nanotube . 

We are currently studying the electronic transport 
properties of "Si nanotubes", as in the recent calculations 
of nanoelectromechanical effects of carbon nanotubes 
[14]. 

4. CONCLUSIONS 
The new DF-FEM-DM method is presented for 

calculating the electronic structures in nonperiodic, 
polyatomic systems using Cartesian coordinates in three 
dimensions. The density matrix method and 
spin-density-functional theory are used, rather than 
solving the Schrodinger eigenvalue problem. A fast 
method for solving Poisson's equation in nonperiodic 
systems, and a separable nonlocal form of norm 
conserving pseudopotentials (with no spurious states and 
no PW cut-off problem) have been employed. Example 
calculations are presented for small di-atomic molecules 
like C2 and Oz. The present scheme also allows us to 
derive the tight-binding (TB) parameters which can be 
applied to calculations of the large scale systems. 
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