## Novel Liquid Crystalline Compounds Based on 4-Aryl-2,3,5,6,7,8hexasilabicyclo[2.2.2]octanes

Masaki Shimizu,\* Masanori Nata, Kotaro Watanabe, and Tamejiro Hiyama Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan Fax: 81-75-383-2445, e-mail: shimizu@npc05.kuic.kyoto-u.ac.jp

We prepared novel cage compounds containing 1-alkyl-4-aryl-2,2,3,3,5,5,6,6,7,7,8,8-dodecamethyl-2,3,5,6,7,8-hexasilabicyclo[2.2.2]octane and found that 1-alkyl-4-phenyl-substituted derivatives  $n-C_nH_{2n+1}C(SiMe_2SiMe_2)_3CPh$  exhibited hexagonal columnar phase, characteristic of discotic liquid crystalline compounds, irrespective of the rod-like structure, when a substituent at the bridgehead position ranged from hydrogen to a pentyl group (n = 0 to 5). Key words: bicyclo[2.2.2]octane, discotic, liquid crystal, mesogen, silicon

## 1. Introduction

We have recently established a facile route to 2,2,3,3,5,5,6,6,7,7,8,8-docecamethyl-2,3,5,6,7,8-hexasilabicyclo[2.2.2]octane.<sup>1</sup> Introduction of a functional group at bridgehead positions can be effected by metalation at the position with a superbase consisting of BuLi and t-BuOK followed by a reaction with an electrophile. Furthermore, cyclohexenylation of the polysilacage compound followed by aromatization allows us to prepare 1-phenyl-substituted 2,3,5,6,7,8hexasilabicyclo[2.2.2]octane 1.2 On the other hand, incorporation of bicyclo[2.2.2]octane moiety into an organic molecule induces molecular rigidity and enhances thermal stability of the resulting compounds. As a bicyclic framework is often utilized as a core of calamitic liquid crystalline compounds,3 we explored potential of the silicon cage compounds as an analog of bicyclo[2.2.2]octane liquid crystalline compounds, report herein the synthesis and properties of polysilacage compounds, 1-alkyl-4-aryl-2,3,5,6,7,8-hexasilabicyclo-[2.2.2]octanes 2.

## 2. Results and Discussion

Treatment of a THF solution of 1 with a superbase in excess at -42 °C followed by the addition of an alkyl halide at -42 °C to room temperature gave the corresponding 1-alkyl-4-aryl-substituted cage compound (2) in good yields as shown in Table 1. Table 1. Preparation of 2.



a) BuLi (4.2 eq)/t-BuOK (4.0 eq), THF, -42 °C, 1~2 h b) n-C<sub>n</sub>H<sub>2n+1</sub>-I (10 eq), -42 °C to room temperature, 1 d.

|   | n | 2  | Yield<br>(%) | n | 2  | Yield<br>(%) |  |  |  |  |  |  |
|---|---|----|--------------|---|----|--------------|--|--|--|--|--|--|
| 1 | 1 | 2a | 90           | 5 | 2e | 92           |  |  |  |  |  |  |
|   | 2 | 2b | 91           | 6 | 2f | 80           |  |  |  |  |  |  |
|   | 3 | 2c | 95           | 7 | 2g | >99          |  |  |  |  |  |  |
|   | 4 | 2d | 86           | 8 | 2h | 82           |  |  |  |  |  |  |

Thermal properies of 1 and 2 were investigated by differential scanning calorimetry (DSC) with heating and cooling rates of 15 °C/min. Phase transition temperatures (°C) and enthalpies (kJ•mol<sup>-1</sup>) are summarized in Table 2. Compounds 1 and 2a-e (n = 0 to 5) showed mesophase between solid state and isotropic liquid, while no mesophase was observed with 2f-h that contained a longer alkyl chain than a pentyl group.

Polarized light microscopy showed that, when heated, **1** and **2a-e** underwent phase transformation from anisotropic to isotropic. When **2a** was cooled slowly from isotropic melts, large domains of dendritic homeotropic texture appeared, typical for columnar mesophases (Figure 1a). The texture was, upon further

|            | heating |       |         |      |       |         |   |    | cooling |          |      |       |          |   |
|------------|---------|-------|---------|------|-------|---------|---|----|---------|----------|------|-------|----------|---|
|            | Cr      |       | (       | Colh |       |         | Ι | Cr |         |          | Colh |       |          | Ι |
| 1          |         | 216.6 | (6.09)  |      | 255.9 | (1.80)  |   |    | 130.8   | (-8.53)  |      | 244.1 | (-2.05)  | • |
| 2a         | •       | 96.1  | (5.01)  | •    | 307.0 | (2.24)  | • |    | 80.4    | (-4.34)  | •    | 296.5 | (-3.25)  | • |
| <b>2</b> b | •       | 96.6  | (1.70)  | ٠    | 293.4 | (3.55)  | • | •  | 75.9    | (-1.54)  | •    | 282.3 | (-3.64)  | • |
| 2c         |         | 158.4 | (4.88)  | •    | 291.3 | (9.08)  | • | •  | 93.9    | (-6.59)  | •    | 264.6 | (-10.66) | • |
| <b>2d</b>  | •       | 277.4 | (2.06)  | •    | 306.6 | (13.34) | • |    | 246.6   | (-14.29) |      |       |          | • |
| 2e         |         | 207.8 | (1.51)  | •    | 234.7 | (5.55)  | • | •  | 170.7   | (-9.13)  |      |       |          | • |
| <b>2f</b>  | •       | 213.3 | (6.75)  |      |       |         | • | •  | 142.4   | (-11.42) |      |       |          | • |
| 2g         | •       | 206.6 | (13.14) |      |       |         | • | •  | 152.6   | (-15.90) |      |       |          | • |
| 2h         | •       | 163.8 | (12.59) |      |       |         | • |    | 89.4    | (-14.68) |      |       |          | • |
|            |         |       |         |      |       |         |   |    |         |          |      |       |          |   |

Table 2. Phase transition temperature (°C) and enthalpy (kJ•mol<sup>-1</sup>) of 1 and 2

cooling, developed to typical hexagonal columnar ice crystal texture (Figure 1b).

On cooling from the melt of **2e**, tree texture was observed at 200 °C, which was characteristic to hexagonal columnar mesophase (Figure 2).



Figure 1. Polarized light microscopic images of **2a** (a) at 290 °C, (b) at 280 °C.



Figure 2. Photomicrograph of 2e at 200 °C.

In summary, 1-alkyl-4-phenyl-substituted derivatives were found to exhibit hexagonal columnar phase, characteristic of discotic liquid crystalline compounds, with an alkyl group ranging from a methyl to a pentyl group. Noteworthy is that the polysilacage compounds exhibit discotic liquid crystallinity irrespective of the rod-like structure.

Further studies on development of novel liquid crystalline compounds utilizing 2,3,5,6,7,8-hexa-silabicyclo[2.2.2]octane as a core are in progress.

3. References

- a) Shimizu, M.; Inamasu, N.; Nishihara, Y.; Hiyama, T. *Chem. Lett.* **1998**, 1145-1146; b) Shimizu, M.; Hiyama, T.; Matsubara, T.; Yamabe, T. *J. Organomet. Chem.* **2000**, *611*, 12-19.
- Shimizu, M.; Watanabe, K.; Nakagawa, H.; Becker, T.; Sugimoto, S.; Hiyama, T. Chem. Lett. 2001, 1090-1091.
- Handbook of Liquid Crystals; Demus, D., Goodby, J., Gray, G. W., Spiess, H.-W., Vill, V., Eds.; Wiley-VCH: Weinheim, 1998.