Preparation of MgB₂/AlN/MgB₂ multi-layers for Josephson tunnel junctions

A. Saito^a, H. Shimakage^{b,c}, A. Kawakami^b, Z. Wang^{b,c}, M. Mukaida^a, and S. Ohshima^a

^aDepartment of Electrical Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510, Japan Fax: 81-238-26-3289, e-mail: atsu@yz.yamagata-u.ac.jp

^bKansai Advances Research Center Communications Research Laboratory, 588-2, Iwaoka, Nishi-ku, Kobe

651-2492, Japan

Fax: 81-78-969-2199, e-mail: simakage@crl.go.jp

CREST-JST

The characteristics of $MgB_2/AlN/MgB_2$ multi-layers were evaluated. The multi-layers were deposited on sapphire (001) substrates by using a carrousel-type sputtering system in the same vacuum run. To determine the superconductivity of an initially grown layer in the upper MgB_2 layer, we investigated the dependence of critical temperature T_c on the thickness of bare MgB_2 thin films at various substrate temperatures T_s . At $T_s=267^{\circ}C$, 10-nm-thick MgB_2 thin films had a $T_{c,onset}$ of 13 K. At $T_s=291^{\circ}C$, films thinner than 30 nm had no superconductivity. The results indicate that $T_s=291^{\circ}C$ and $T_s=267^{\circ}C$ are suitable for the fabrication of lower and upper layers, respectively. In $2\theta/\theta$ x-ray diffraction, the intensity of the (002) MgB_2 peak in the $MgB_2/AlN/MgB_2$ multi-layers was higher than that in single layers.

Key words: MgB_2 thin film, $MgB_2/AlN/MgB_2$ multi-layers, carrousel-type sputtering, initially grown layer, $2\theta/\theta x$ -ray diffraction

1. INTRODUCTION

The recent discovery of superconductivity in MgB_2 at 39 K by Akimitsu et al. [1] has generated interest not only for the study of the physics of superconductivity but also for its commercial use in electronic applications. The high gap energy, which is expected in MgB_2 materials, is advantageous to the fabrication of high-frequency devices. Moreover, MgB_2 films can act as a neutron detector because of a high nuclear reaction cross section of ¹⁰B and neutrons. Many researchers have been investigating the fabrication process of MgB_2 thin films and junctions for use in the above devices [2-7].

We have made some advances in the development of as-grown MgB₂ thin films, which were fabricated by using a carrousel-type multiple-target sputtering system. Despite the fact that the thin films were deposited on sapphire c-plane substrates at a low substrate temperature (T_s) , the as-grown MgB₂ thin films showed a critical temperature (T_c) of 28 K [8,9]. Additionally, we fabricated MgB₂/AlN/NbN Josephson tunnel junctions with as-grown MgB₂ films, and the junctions showed excellent quasiparticle and Josephson tunneling characteristics [10]. The surface morphology of the as-grown MgB_2 thin films was very flat and smooth, and the AlN barrier on the lower MgB₂

electrode had satisfactory insulating characteristics.

We need methods that would enable the fabrication of MgB_2 superconductor/insulator/ superconductor (SIS) junctions with inherent MgB_2 characteristics. In this paper, we describe the preparation of $MgB_2/AlN/MgB_2$ multi-layers for the purpose of making tunnel junctions. We evaluated the superconductivity and crystallinity of an initially grown layer in the upper MgB_2 layer because is important for multi-layer junctions.

2. EXPERIMANTAL RESULTS

2.1. Film preparation and electrical properties

As-grown MgB₂ thin films were deposited on c-plane (001) sapphire substrates using a carrousel-type sputtering system with a load-lock apparatus. The substrates were intentionally heated during the deposition by using a lamp heater at a $T_s=267$ and 291° C. The T_s was corrected by using an empirical relation between the actual temperature and the temperature measured by a thermocouple at the inner wall of the carrousel. The actual temperatures at the surface of the sapphire substrates were measured by the thermocouple with Ag paste. Note that the T_s values in this report are different from those in previous reports [8,9]. This is because we improved the thermal contacts between the sapphire substrate and substrate holder and used an advanced empirical relation to correct the T_s . As a result, the stability and reproducibility of the substrate heating were improved. The sputtering conditions have been described in detail in a previous report [8,9].

The resistivity vs. temperature $(\rho-T)$ curves for the MgB₂ thin films were measured by a standard four-probe method. The temperature was measured using a carbon-glass resistor (model CGR-1-1000) calibrated by Lake Shore Cryotronics, Inc. The films were patterned using conventional photolithography and electron cyclotron resonance etching techniques.

Figure 1 shows a typical p-T curve for a bare MgB₂ thin film deposited on a c-plane sapphire substrate at a T_s of 291°C, which was better condition for the deposition of superconducting thin films with the highest T_c value by sputtering [8,9]. The thickness of the film was 200 nm. The normal-state resistivity at 40 K was 50 μΩcm, and the residual resistivity ratio (RRR = $\rho(295)$ K/ ρ (40 K)) was 1.26. The inset shows the transition to superconductivity on a larger scale. The resistivity of the film began to exhibit superconductivity (T_{c.onset}=T(0.9p(40 K))) at 28.4 K, and the resistivity abruptly decreased to zero. The $T_{c,offset}$ which was defined as $T(0.1\rho(40 \text{ K}))$ was 28.3 K. As shown in the inset (Fig. 1), the film had a transition width (ΔT_c) of 0.1 K, which was taken at the onset (10%) and offset (90%) points of the resistance transition. To our knowledge, our films have the highest T_c values

Fig. 1. Resistivity vs. temperature (ρ -T) curves at $T_s = 291$ °C. The inset is a magnified view near the T_c region.

ever reported for as-grown MgB_2 films made by conventional sputtering methods.

Superconductivity of the initially grown layer in upper MgB₂ layers is one of the most important factors for Josephson junctions with multi-layers. To determine the superconductivity of the initially grown layer, we investigated the dependence of the T_c on the film thickness d. Figure 2 (a) shows T_c vs. d characteristic at $T_s=291$ °C. The solid line was calculated based on Cooper's theory using the maximum T_c value of 28.4 K [11]. The T_c of the films deposited at $T_s=291$ °C decreased gradually as the film thickness decreased. The films thinner than 30 nm showed semiconductor-like o-T behavior as shown in Fig. 2 (a). To improve the superconductivity of the initially grown layer, we tried the low temperature depositions at $T_s=267$ °C which is a better condition to close to the stoichiometric composition for the growth of thick films [8]. Figure 2 (b) shows T_c vs. d

Fig. 2. Dependence of T_c on the thickness of MgB₂ thin films. (a): $T_s=291$ °C, (b): $T_s=267$ °C.

characteristic at T_s=267°C. The solid line was also calculated by Cooper's theory using the maximum T_c value of 26.0 K [11]. Interestingly, the films thinner than 30 nm deposited at $T_s=267^{\circ}C$ still had superconductivity, although the maximum T_c value of the film deposited at $T_s=267$ °C was lower than that of the films deposited at $T_s=291^{\circ}C$. Figure 3 shows the temperature dependence of normalized resistance R/R(295 K) in a 10-nm-thick MgB₂ thin film at $T_s=267$ °C. The inset is an enlarged view near the T_c region. This result corresponds to that for the 10-nm-thick film in Fig. 2 (b). No patterning was carried out to measure the resistivity in order to avoid the deterioration of the film. The T_{c.onset} and T_{c.offset} of this film were 13.1 K and 8.3 K, respectively. These results indicate that T_s=267°C may be a better deposition temperature for upper MgB_2 thin films than $T_s=291$ °C.

Fig. 3. Temperature dependence of normalized resistance R/R(295 K) in 10-nm-thick MgB_2 thin films at $T_s=267^{\circ}C$. The inset is an enlarged view near the T_c region.

2.2. Multi-layer deposition and crystal structures

MgB₂/AlN/MgB₂ trilayers were deposited on c-plane (001) sapphire substrates in a single vacuum run. The lower 200-nm-thick MgB₂ layers were deposited at $T_s=291^{\circ}C$. The 1.5-nm-thick AlN layers were reactively sputtered using an Al target, 6 inches in diameter, in pure N₂ gases under a total pressure of 0.67 Pa while the carrousel was rotated at 50 rpm. The upper 100-nm-thick MgB₂ layers were deposited at $T_s=267^{\circ}C$. All other conditions for the upper layers were the same as those for the base MgB₂ layers.

The crystal structures of the MgB₂ thin films and the MgB₂/AlN/MgB₂ trilayers were studied using $2\theta/\theta$ x-ray diffraction (XRD). Figure 4 shows the XRD $2\theta/\theta$ patterns of an MgB₂(200 nm thick) single layer (Fig. 4 (a)) and the $MgB_2(200)$ nm)/AlN(1.5 nm)/MgB₂(100 nm) trilayer (Fig. 4 (b)). Both (001) and (002) reflections of the MgB₂ phase were observed in the scans of the single MgB₂ layers and multi-layers. The intensity of the (002) MgB₂ peak in the MgB₂/AlN/MgB₂ multi-layers was higher than that in the single layer. Notice that the intensity of the (002) reflection in the multi-layers shown in Fig. 4 (b) is proportional to the total thickness of the MgB₂ thin films. These results indicate that the lower and upper MgB₂ layers in the multi-layers have c-axis orientation, which makes them suitable for use in the fabrication of MgB_2 Josephson tunnel junctions.

Fig. 4. XRD $2\theta/\theta$ patterns of an MgB₂(200 nm) single layer (a) and an MgB₂(200 nm)/AlN(1.5 nm)/MgB₂(100 nm) trilayer (b).

3. CONCLUSION

MgB₂/AlN/MgB₂ multi-layers were deposited on sapphire (001) substrates for the purpose of making Josephson tunnel junctions. То investigate the superconductivity of an initially grown layer in the upper MgB₂ layer, we measured the dependence of T_c on the thickness of as-grown MgB₂ thin films at various T_s. At $T_s=267^{\circ}C$, 10-nm-thick MgB₂ thin films showed a T_{c.onset} of 13 K at various T_s. From 20/0 XRD measurements of single MgB₂ layers and MgB₂/AlN/MgB₂ multi-layers on sapphire (001) substrates, we found that the upper MgB₂ layers had c-axis orientation. These results indicate that MgB₂/AlN/MgB₂ multi-layers can be used in trilayer structures of MgB₂ SIS junctions. An evaluation of the junctions' dc characteristics is currently underway.

References

[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London) 410, 63 (2001).

[2] W. N. Kang, H. J. Kim, E. M. Choi, C. U. Jung and S. I. Lee, Science, **292**, 1521 (2001).

[3] K. Ueda and M. Naito, Appl. Phys. Lett., 79, 2046 (2001).

[4] X. H. Zeng, A. V. Pogrebnyakov, M. H. Zhu,
J. E. Jones, X. X. Xi, S. Y. Xu, E. Wertz, Qi Li, J.
M. Redwing, J. Lettieri, V. Vaithyanathan, D. G.
Schlom, Zi-Kui Liu, O. Trithaveesak, and J.
Schubert, Appl. Phys. Lett., 82, 2097 (2003).

[5] G. Carapella, N. Martucciello, G. Costabile, C. Ferdeghini, V. Ferrando, and G. Grassano, Appl. Phys. Lett., **80**, 2949 (2002).

[6] M. H. Badr, M. Freamat, Y. Sushko, and K. W. Ng, Phys. Rev. **B65**, 184516 (2002).

[7] D. Mijatovic, A. Brinkman, I. Oomen, G. G. Rijnders, H. Hilgenkamp, H. Rogalla, and D. H. A. Blank, Appl. Phys. Lett., **80**, 2141 (2002).

[8] A. Saito, A. Kawakami, H. Shimakage, and Z. Wang, Jpn. J. Appl. Phys., 41, L127 (2002).

[9]A. Saito, A. Kawakami, H. Shimakage, and Z. Wang, Supercond. Sci. Technol., 15, 1325 (2002). [10] A. Saito, A. Kawakami, H. Shimakage, H. Terai, and Z. Wang, J. Appl. Phys., 92, 7369 (2002).

[11] L. N. Cooper, Phys. Rev. Lett., 6 (1961) 689.

(Received October 13, 2003; Accepted March 5, 2004)