Room Temperature Magneto-Resistance of Fe₃O₄/Ag Granular System

Yoshihide Kimishima, Masatomo Uehara, Yoshiki Notani, Kei Kobayashi and Waka Yamada

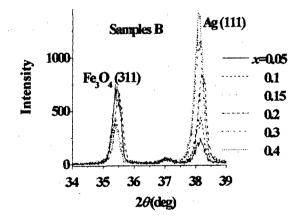
Department of Physics, Faculty of Engineering, Graduate School of Yokohama National University, Tokiwadai 79-5, Hodogaya, Yokohama 240-8501, Japan Fax: +81-45-339-4182, e-mail: <u>kimi@ynu.ac.jp</u>

Abstract

Magneto-resistances of sintered mixture of Fe_3O_4 and Ag or Ag_2O were measured at room temperature (RT). The samples including large Fe_3O_4 and Ag grains showed at most -1% of MR ratios, which had the tendency to disappear at larger Ag content than the percolation threshold of Ag. In the samples with small Fe_3O_4 and Ag grains, three times larger negative MR ratios were observed. For these series, we expected the large RT-MR ratio by physical and chemical stabilization of Fe_3O_4 nano-contacts and the spin-polarized conduction through thin metallic Ag at the intergrain parts between Fe_3O_4 -grains. Consequently, $Fe_3O_4/Ag/Fe_3O_4$ paths were effective for the GMR by the conduction of spin polarized electrons from Fe_3O_4 grains.

Key Words : Fe₃O₄, Ag , Ag₂O, resistivity, magneto-resistance

INTRODUCTION


The magnetite (Fe₃O₄) has been known as the half metal with the spin polarized conduction electrons in the 3d minority spin bands [1,2]. In the recent years, the large negative magneto-resistance (MR) effect in low field was expected, and many experimental results were reported for the Fe₃O₄ thin films [3-10]. However only small negative MR ratio (MRR) of about -1% have been observed for polycrystalline and single crystal thin films at room temperature (RT) under the magnetic field of 1 T. As for the TMR effects, the RT-MRR of -0.5 % at 0.15 T and $-7.4 \sim -6$ % at 0.9 T were reported for the Fe₃O₄ films with the tunnel barriers of MgO [11] and γ -Fe₂O₃ [12-13], respectively. The Fe₃O₄ thin films in which γ . Fe₂O₃ grains were embedded [14] showed the RT-MRR of -1.5 % at 0.3 T. For the bulk granular magnetite system, the $Zn_{0.41}Fe_{2.59}O_4$ with α -Fe₂O₃ grain boundaries [15] had an extremely large -61 % of RT-MRR at 1 T, but it was disappeared above 320 K. On the other hand, the ZnFe₂O₄ tunnel barriers [16] gave -7 % of RT-MRR at 0.8 T. The RT-MRR of -75 % at 8 mT was a remarkable result for nano-contacted Fe₃O₄ particles [17], where the electron pressure to the pinned magnetic domain wall, namely, the magnetic balloon effect, was important. However it was difficult to keep and control the nano-contacted areas under variable disturbances.

In the present work, the RT-MRR effects by Ag grains at the boundaries of large or small Fe_3O_4 grains. We expected that the Ag grains made the contacts among Fe_3O_4 grains being stable mechanically and chemically, and supplied well conduction paths for the polarized electrons from Fe_3O_4 grains.

EXPERIMENTAL RESULTS

X-ray diffraction

The Fe₃O₄/Ag samples with large Fe₃O₄ grains were sintered from the powder mixtures of commercial Fe₃O₄ and Ag at 773 K in the atmosphere of H₂ : Ar = 0.02 : 0.98. Powder CuK α x-ray diffraction patterns were depicted in Figure 1 for the (311) main peak of Fe₃O₄ and (111) one of Ag. Here x is defined as the Ag volume fraction of $V_{Ag}/(V_{Fe3O4}+V_{Ag})$. From the half widths of these peaks, the grain sizes of Fe₃O₄ and Ag were estimated as to be larger than 20 nm. These samples with x from 0.05 to 0.4 were called as the samples B.

Figure 1: Main peaks of Fe₃O₄ and Ag in samples B.

In addition to the samples B, the three kinds of samples with small grains were prepared. The samples I and II were made from the powder mixtures of Fe₃O₄ and commercial Ag and Ag₂O, respectively, where the Fe₃O₄ precursor was precipitated by mixing FeCl₂ \cdot 4H₂O, 2FeCl₃ \cdot 6H₂O and 8NH₃ aqueous solutions. On the other hand, samples III were directly precipitated by mixing of

the aqueous solutions of FeCl₂• 4 H₂O and 2FeCl₃• 6H₂O, and NH₄OH solutions of Ag₂O, though the possible molar ratio of Ag was restricted below 0.4 (x=0.13). All of the samples I-III were sintered at 473 K in the Ar atmosphere with 1.5% H₂ gas.

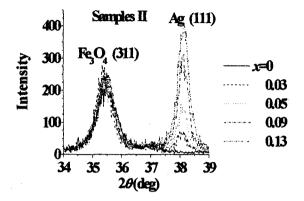


Figure 2: Main peaks of Fe₃O₄ and Ag in samples II.

The x-ray diffraction results of samples II were given in Figure 2. The x also means the volume fraction of Ag in each sample. The half widths of diffraction peaks showed that the grain sizes of Fe_3O_4 and Ag were about 10 nm and 20 nm, respectively. The samples I and III showed nearly same grain sizes of Fe_3O_4 and Ag as those in samples II. Roughly speaking, samples B have the bulk like natures of Fe_3O_4 in comparison to samples I-III with 10 nm-class Fe_3O_4 grains, though the precise grain sizes should be determined from TEM images.

Magneto-resistance

Samples B: The field dependences of electrical resistances R(H) were measured by 4-terminals method under the field of $\mu_0 H$ from -1 T to 1 T at room temperature (RT) of 300 K. The magneto-resistance ratios (MRR) of samples B were given in Figure 3. Here the MRR was defined by $[R(H)-R_{\max}]/R_{\max}$, where R_{\max} is the maximum resistance near 0 field. All of the samples showed no hysteretic MR with increasing and decreasing H due to the smallness of coercive force H_c . In the x-region below 0.15, the |MRR| decreased with increasing x. The maximum |MRR| at 1T was -1.4 % for x = 0.05. In x > 0.2, the |MRR| began to decrease with increasing x and disappeared at x = 0.4.

The MRR at 1 T and the resistivity ρ_0 at 0 field were plotted in Figure 4 for samples B. The ρ_0 was nearly constant in x < 0.2, and the |MRR| had an anomalous peak at about x = 0.2. Then the ρ_0 and |MRR| rapidly decreased in x > 0.2. These results can be interpreted as the percolation behavior of conducting Ag paths with the percolation threshold x_c of about 0.2–0.3. The similar results were reported for the γ -Fe₂O₃/Ag granular nano-composites [18], where the field dependent electron hopping rate from Fe²⁺ to Fe³⁺ was discussed. Here we also assume that the intrinsic MR by electron hopping through the Fe₃O₄ grains should be dominant in the samples B at room temperature.

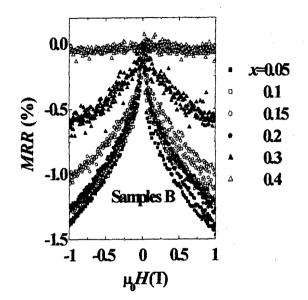


Figure 3: MR ratios at 300 K of samples B.

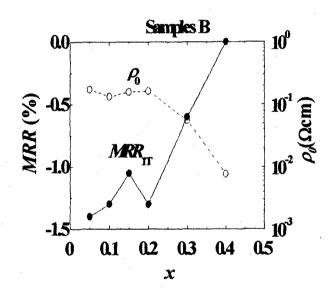


Figure 4: MR ratios at 1 T and resistivities ρ_0 at 0 field of samples B.

Samples I - III: For these samples, we expected the large RT-MR by the stabilization of Fe_3O_4 nano-contacts areas by metallic Ag nano-particle at the inter-grain parts between Fe_3O_4 nano-grains. The MRR at room temperature of samples II were given in Figure 5. It should be noted that samples II were prepared by sintering the mixture of Fe_3O_4 and Ag_2O powders. Since the precursor (x=0) Fe_3O_4 grains of present series have about 10 nm diameter, the nano- contacted areas between them have a possibility to induce relatively high MRR [17]. In 0 < x < 0.05, the |MRR| decreased with Ag content. Then the |MRR| began to increase with increasing x above

0.05 and reached 3.8 % at x = 0.13. This value of |MRR| is larger than that of precursor Fe₃O₄ of x = 0 and samples B. In samples B, we can assume that the contacted area between Fe₃O₄ grains is much larger than that in samples II. Therefore it was concluded that the stabilization of nano-contacted area is effective to realize the GMR effect in the Fe₃O₄ system.

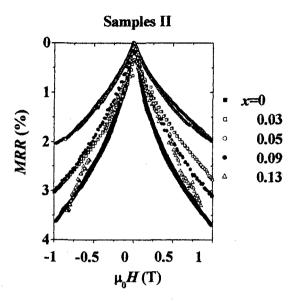


Figure 5: MR ratios at 1 T and 0-field resistivity ρ_0 of samples II.

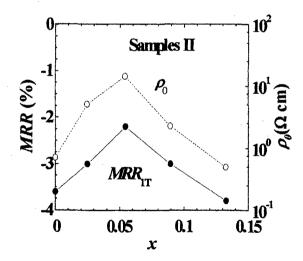


Figure 6: MR ratios at 1 T and 0-field resistivity ρ_0 of samples II.

The MRR at 1 T and the resistivity ρ_0 at 0 field were plotted in Figure 6 for samples II. The ρ_0 increased with increasing x in x < 0.05. At x = 0.05, the ρ_0 had a maximum value of about 16 Ω cm and |MRR| became minimum value of 2.2%. Then the ρ_0 decreased and the |MRR| increased with increasing x above 0.05. Though the x-value, at which the MRR has an anomaly, was different, the behaviors of MRR substantially agree with those of samples B as shown in Figures 7.

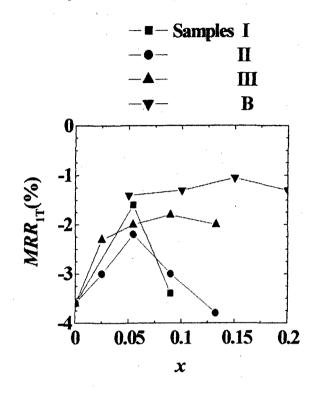


Figure 7: MR ratios at 1T of samples I-III and B.

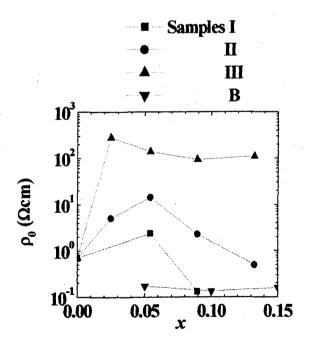
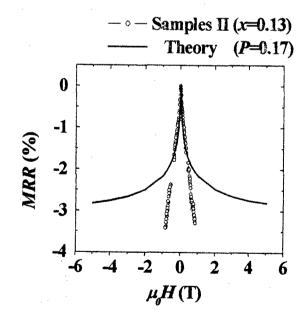



Figure 8 : 0-field resistivity ρ_0 of samples I-III and B.

There is a problem of increasing ρ_0 and decreasing |MRR| in the region of 0 < x < 0.05 as shown in Figure 6. In the sintering process, Ag₂O was reduced to Ag by hydrogen gas, and Fe₃O₄ might be partly oxidized to γ -Fe₂O₃ by residual oxygen from the reaction of Ag₂O $\rightarrow 2$ Ag+(1/2)O₂. Instead of the spin polarized electron conduction, the hopping conduction of electrons from Fe²⁺ to Fe³⁺ ions are arose by the Fe₃O₄/ γ -Fe₂O₃/Ag/ γ -Fe₂O₃/Fe₃O₄ paths, which give the relatively high resistivity and low |MRR|. However, the GMR like behaviors of decreasing ρ_0 and increasing |MRR| in the high x region above 0.05, which looks like that the conduction of spin polarized electrons from Fe₃O₄ grains becomes dominant, can not be explained by the above consideration. The analogous situations also exist for samples I and III as shown in Figuress 7 and 8.

Here we consider that the increasing ρ_0 and decreasing |MRR| in the region of 0 < x < 0.05 of samples II, may be dominated by the contact resistance between Fe₃O₄ grains. In low Ag concentration region, the directly contacted area of Fe₃O₄ particles may be reduced by slight Ag-doping. When the x increases above 0.05, ρ_0 decreases and |MRR| increases by the increasing number of Fe₃O₄/Ag/Fe₃O₄ connections, which induce the GMR behavior. The relatively high x-value of 0.15, at which the MRR has an anomaly in samples B, can be explained by the difference of the particle size of Fe₃O₄, because the large Fe₃O₄ particles have large contacted areas against the increasing of Ag concentration.

Figure 9 : MRR of samples II (x=0.13) and theoretical curve at polarization of P= 0.17.

In Figure 9, the theoretical curve of MRR was given for the conduction electrons with polarization P of 0.17. The theoretical MRR-values were estimated from $-P^2m^2/(1+P^2m^2)$, where $m=M(H)/M_s$ [8]. The M(H) is the field dependent magnetization, and the M_s is the saturated one of samples II (x=0.13). The MRR of this sample showed the TMR like behavior in low field. But, even in the high field region, the MRR of this sample becomes linear in field. The investigation for higher x is interesting and now in progress.

ACKNOWLEDGEMENT

The present work was financially supported by Takahashi Industrial and Economic Research Foundation.

REFERENCES

- A. Yanase and K. Shiratori, J. Phys. Soc. Jpn., 53, 312-317 (1984).
- [2] S. F. Alvarado, M. Erbudak and P. Munz, Phys. Rev. B, 14, 2740-2745 (1976).
- [3] G. Q. Gong, A. Guputa, G. Xiao, W. Qian and V. P. Dravid, Phys. Rev. B, 56, 5096-5099 (1997).
- [4] S. B. Ogale, K. Ghosh, R. P. Sharma, R. L. Greene, R. Ramesh and T. Venkatesan, Phys. Rev. B, 57, 7823-7828 (1998).
- [5] J. M. Coey, A. E. Berkowitz, LI. Balcells, F. F. Putris and F. T. Parker, Appl. Phys. Lett., 72, 734-736 (1998).
- [6] J. Tang, K-Y. Wang and W. Zhou, J. Appl. Phys., 89, 7690-7692 (2001).
- [7] P. Poddar, T. Fried and G. Markovich, Phys. Rev. B, 65, 172405-1-4 (2002).
- [8] M. Ziese, R. Hohne, H. C. Semmelhack, H. Reckentin, N. H. Hong and P. Esquinazi, Eur. Phys. J. B, 28, 415-422 (2002).
- [9] D. L. Peng, T. Asai, N. Nozawa, T. Hirata and K. Sumiyama, Appl. Phys. Lett., 81, 4598-4600 (2002).
- [10] T. Taniyama, Y. Kitamoto and Y. Yamazaki, J. Appl. Phys., 89, 7693-7695 (2001).
- [11] X. W. Li, A. Gupta, G Xiao, W. Oian and V. P. Dravid, Appl. Phys. Lett., 73, 3282-3284 (1998).
- [12] K. Nishimura, Y. Kohara, Y. Kitamoto and M. Abe, J. Appl. Phys., 87, 7127-7129 (2000).
- [13] Y. Kitamoto, Y. Nakayama and M. Abe, J. Appl. Phys., 87, 7130-7132 (2000).
- [14] M. Uotani, T. Taniyama and Y. Yamazaki, J. Appl. Phys., 87, 5585-5587 (2000).
- [15] P. Cheng, D. Y. Xing, Y. W. Du, J. M. Zhu and D. Feng, Phys. Rev. Lett., 87, 107202-1-4 (2001).
- [16] C. T. Lie, P. C. Kuo, V.-C. Hsu, I. J. Chang and J. W. Chen, J. Magn. Magn. Mat., 239, 160-163 (2002).
- [17] J. J. Versluijs, M. A. Bari and J. M. D. Coey, Phys. Rev. Lett., 87, 026601-1-4 (2001).
- [18] J. Tang, L. Feng and J.A. Wieman, Appl. Phys. Lett., 74, 2522-2524 (1999).

(Received October 8, 2003; Accepted February 13, 2004)