Promoted Ir/SiO₂ Catalysts for the Selective Reduction of NO in the Presence of O₂ and SO₂

Hideaki Hamada, Yoshiaki Kintaichi, Masaaki Haneda, Haruko Kudo*, Yukinori Nagao*, Tomohiro Yoshinari** and Kazuhito Sato** National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan Fax: 81-29-861-4457, e-mail: h.hamada@aist.go.jp *Science University of Tokyo **Petroleum Energy Center

The effect of metal additives on the catalytic performance of Ir/SiO_2 catalyst for the selective reduction of NO with H_2 in the presence of O_2 and SO_2 was investigated. The addition of alkali and alkaline earth metals was quite effective to enhance the catalytic activity and selectivity of Ir/SiO_2 for NO reduction under the conditions of low temperature and high O_2 concentration. The promoting effect of alkali metals and alkaline earth metals was found to be in the order of Li > Na > K > Rb > Cs, and Ba > Sr ~ Ca > Mg, respectively. Li was the most effective additive. Catalyst characterization suggested that Li prevents catalyst deactivation as an oxidation-retardant for the active Ir metal supported on SiO₂.

Key words: Nitrogen oxide, Selective reduction, Hydrogen, Iridium silica catalyst, Alkali metal, Alkaline earth metal

1. INTRODUCTION

The removal of NOx in exhaust emissions is one of the major issues in environmental technology. In particular, the development of catalytic technologies for NOx removal in diesel exhaust attracts much attention recently because the three way catalyst system, which works very well for gasoline-fueled vehicles, cannot reduce NOx in oxygen-rich diesel exhaust. NH₃-SCR (selective catalytic reduction), which is another well-known catalytic NOx removal system and now employed for large-scale boilers, uses poisonous NH₃ and therefore is not suitable for mobile or small NOx sources.

In this regard, several novel catalytic technologies have been under investigation. For instance, urea-SCR¹, which uses nonpoisonous urea as a reductant in place of NH₃, is considered to be a hopeful measure for heavy-duty diesel vehicles. However, the establishment of the infrastructure for urea supply is a practical problem. NOx storage-reduction (NSR)² recently developed by Toyota is also an efficient catalytic NOx reduction system for diesel vehicles. However, the catalysts used in this system are very sensitive to poisoning by SOx contained in diesel exhaust. Sophisticated and complicated engine control is also necessary for this system.

Accordingly, the development of effective catalysts for SCR of NO using more practical reductants other than NH_3 and urea is more desirable from a practical point of view. In this regard, SCR of NO with hydrocarbons in the presence of O_2 has been a focus of attention from lots of researchers for the past decade, and quite a number of active catalysts have been found ³⁻⁵⁾. Nevertheless, their catalytic activity is not sufficient for application to diesel vehicles in spite of the enormous efforts given to the investigation.

Recently, several papers have been published on the selective reduction of NO using H₂ as a reductant over supported Pt or Pd catalysts ⁶⁻⁹⁾. Although these catalysts can reduce NO efficiently in the presence of O_2 , coexisting SO₂ causes a complete loss of catalytic activity. Moreover, the temperature window, in which NO reduction proceeds, is quite narrow. Our group, on the other hand, has recently found that SiO2-supported Ir and Rh are active for the selective reduction of NO with ¹⁰⁻¹²⁾. The most prominent feature of this novel H_2 catalytic reaction is that the presence of both O₂ and SO₂ is necessary for NO reduction to proceed. This is a quite favorable nature for the treatment of diesel exhaust. Another interesting characteristic of this catalytic reaction is that SiO₂ is the only effective support.

One of the disadvantages of this catalytic reaction is that, although the catalysts show quite high activity, the selectivity at high O_2 concentrations is not sufficient, which should be improved for practical use. In this paper, we wish to report that alkali and alkaline earth metals show an excellent promoting effect on the NO reduction activity of Ir/SiO₂ for the selective reduction of NO with H₂ in the presence of O₂ and SO₂.

2. EXPERIMENTAL

2.1 Catalyst preparation

SiO₂ (Fuji Silysia Chemical, Cariact G-10, 300 m^2g^{-1}) was used as a catalyst support. Ir/SiO₂ was prepared by impregnation of SiO₂ with an aqueous solution of H₂IrCl₆, followed by drying at 110°C overnight and calcination at 600°C for 8h in air. The loading of Ir metal was fixed at 5 wt% in this study.

The doping of the alkali metals (Li, Na, K, Rb, and Cs) and alkaline earth metals (Mg, Ca, Sr, and Ba) was performed by impregnation of Ir/SiO_2 with aqueous solutions of nitrate, followed by drying at $110^{\circ}C$

overnight and calcination at 600° C for 8h in air. The loading of the metals was fixed at a molar M/Ir ratio of 1/3 except for Li, in which case the loading was changed from 1/6 to 3/3.

2.2 Catalytic activity measurement

The catalytic activity was measured by using a fixed bed flow reactor made of quartz with a 10mm diameter. The standard reaction gas contained 1000ppm NO, 5% O_2 , 6000 ppm H₂, 6% H₂O and 20 ppm SO₂ diluted in He, unless otherwise specified.

The standard reaction procedure was as follows. 0.04g of a catalyst placed in the reactor was pre-reduced in a gas flow containing 6000 ppm H₂ and 6% H₂O in He. After the gas was switched to the reaction gas, stable catalytic activity was measured at each temperature as the reaction temperature was lowered from 600°C with a step of 50°C. In some cases, the activity was measured while the temperature was raised from 200°C to 600°C with a step of 50°C.

The analysis of the effluent gas was made using two gas chromatographs (Shimadzu GC8A) equipped with a Molecular Sieve 5A column (for the analysis of N_2 and H_2) and a Porapak Q column (for the analysis of N_2O). The catalytic activity was evaluated in terms of NO conversion to N_2 (and N_2O) and H_2 conversion. A chemiluminescence NOx analyzer was used to check the stability of the catalytic activity.

2.3 Catalyst characterization

X-ray diffraction measurements (Mac Science MXP18) were performed to get information on the crystal structure of the catalyst samples by using CuK α radiation at 40kV and 150mA. The scanning was done from $2\theta = 10$ to 90 degrees at a speed of 5 deg min⁻¹.

TPO (Temperature-programmed oxidation) of the catalyst samples was also performed. 0.1g of a sample was first reduced at 400°C in flowing 100% H₂ for 1h and then the gas was switched to He and the temperature was lowered to room temperature in He. Then, TPO was done in a gas flow of 1% O₂/He at a heating rate of 10°C min⁻¹ to 800°C. The consumption of O₂ was monitored with a mass spectrometer.

3. RESULTS AND DISCUSSION

3.1 Effect of metal additives

Fig.1 shows the additive effect of alkali metals on the catalytic activity of Ir/SiO₂. Here, the loading of alkali metals was fixed at M/Ir= 1/3. It is seen that the activity for NO reduction at lower temperatures increases when K, Na and Li was doped to Ir/SiO₂. Li shows the most prominent effect to promote the activity at temperatures from 200°C to 300°C. The formation ratio of N₂/N₂O as the reduction products of NO was approximately 3/1 in most cases (not shown in figures). The activity for H₂ conversion was also promoted by addition of the alkali metals. It is interesting, on the other hand, that Cs, which is the heaviest alkali metal, decreased the activity of Ir/SiO₂ over almost the entire temperature range. Thus, the promoting effect of alkali metal additives was in the order of Li > Na > K > none ~ Rb > Cs.

Fig.2 presents the additive effect of alkaline earth metals. It is quite surprising that, in contrast to alkali metals, heavier alkaline earth metals showed more promotion effect on Ir/SiO₂, Ba being the most efficient promoter. On the other hand, Mg deteriorates the activity of Ir/SiO₂ just like Cs. Consequently, the promoting effect of the alkaline earth metals was found to be in the order of Ba > Sr ~ Ca > none > Mg.

rig.s Entoor of En allound on the activity of En 175102

3.2 Catalytic performance of Li-promoted Ir/SiO₂

Since Li was the most effective additive, the performance of Li-promoted Ir/SiO_2 was investigated. In Fig.3 is shown the effect of Li loading on the catalytic

activity of Li/Ir/SiO₂. Here, the ratio of Li/Ir was changed from 1/6 to 3/3. The NO reduction activity increased with Li loading up to Li/Ir= 1/3. However, the activity was not promoted when Li loading was further increased. H₂ conversion also increased by Li addition up to Li/Ir= 1/3 but remained unchanged after that.

Since this reaction is very sensitive to the presence of O_2 , the catalytic activity of Li/Ir/SiO₂ (Li/Ir= 1/3) was checked in comparison with Ir/SiO₂ by changing the concentrations of O2 from 0% to 10%. Figs.4 and 5 present the catalytic performance of Ir/SiO2 and Li/Ir/SiO₂, respectively, for NO reduction in the presence of various O2 concentrations. It should be noted that 20 ppm SO₂ was always present in the reaction gas. In the absence of O₂, neither Ir/SiO₂ nor Li/Ir/SiO₂ showed any activity for NO reduction from 200°C to 600°C. In the presence of 1% O_2 , the NO conversion was considerably increased on both Ir/SiO2 and Li/Ir/SiO₂. This indicates that O₂ is necessary for NO reduction with H₂ in the presence of SO₂. With regard to the effect of Li, it is quite interesting that the activity of Ir/SiO₂ is better than that of Li/Ir/SiO₂ for NO reduction in the presence of 1% O₂. When O₂ concentration was increased to 5% and 10%, however, Li/Ir/SiO₂ showed better activity than Ir/SiO₂. Accordingly, it can be concluded that the promotion effect of Li was observed only at high O₂ concentrations.

Fig.5 Effect of O_2 on the activity of Li/Ir/SiO₂.

3.3 Role of Li promoter

In order to get information on the role of Li promoter, X-ray diffraction patterns were recorded for Ir/SiO_2 and Li/Ir/SiO₂, which are shown in Fig.6. The diffraction lines of IrO_2 were detected for both Ir/SiO_2 and Li/Ir/SiO₂ calcined in air at 600°C in the preparation procedure, whereas those of Ir metal detected for the both samples after reduction with H₂+H₂O. However, no differences in the diffraction patterns were noticed between Ir/SiO₂ and Li/Ir/SiO₂. This suggests that Li does not change the bulk crystal structure of Ir species supported on SiO₂ at the stage of catalyst preparation before the measurement of the catalytic activity.

Then, the X-ray diffraction patterns of the catalysts were recorded after the reaction test performed from 600° C to 200°C. The spectra are shown in Fig.7. In this figure, a clear difference in the patterns can be observed. Namely, Ir/SiO₂ shows mainly the pattern of IrO₂, while the lines of Ir metal were principally detected for Li/Ir/SiO₂. These observations indicate that Ir on Ir/SiO₂ is in more oxidized form than that on Li/Ir/SiO₂ after the measurement of the catalytic activity.

Fig.7 XRD patterns of Ir/SiO2 and Li/Ir/SiO2 after use

Consequently, it is probable that Li has an effect to prevent the oxidation of Ir metal during the reaction, which is the active species for NO reduction procedure. Fig.8 gives the results of catalytic activity evaluation of Ir/SiO_2 under different conditions, that is, at decreasing (from 600°C to 200°C) and increasing reaction temperature (200°C to 600°C) after pre-reduction with H_2 + H_2O at 600°C. It is evident that at low temperatures around 200°C Ir/SiO_2 showed much higher activity under the latter conditions than under the former conditions. This evidently points out that deactivation of Ir/SiO_2 proceeds in the atmosphere of the reaction gas containing NO, O_2 , H_2 , SO_2 , and H_2O during the activity measurement. Taking the above-described XRD measurement into consideration, it is suggested that the deactivation was caused by oxidation of Ir metal.

Fig.9 shows the catalytic performance of Li/Ir/SiO_2 evaluated under the same conditions of decreasing and increasing reaction temperature. In this case, the difference of catalytic activity between the two conditions is not obvious, suggesting that Li has an effect to prevent the deterioration of the catalyst by retarding Ir oxidation.

Fig.8 Activity evaluation of Ir/SiO₂ under different conditions of decreasing and increasing temperature

Fig.9 Activity evaluation of Li/Ir/SiO₂ under different conditions of decreasing and increasing temperature

To make sure of the effect of Li against oxidation of Ir, TPO of pre-reduced Li/Ir/SiO₂ with various Li/Ir ratios was performed. Fig.10 indicates the TPO profiles corresponding to O_2 consumption with increasing temperature. The O_2 consumption peak was observed at

502°C for Ir/SiO₂. As the Li loading was increased, the peak clearly shifted to higher temperature, indicating that the addition of Li makes the oxidation of Ir more difficult. This result agrees quite well with the speculation on the role of Li described above.

4. CONCLUSIONS

(1) The addition of alkali and alkaline earth metals promotes the activity of Ir/SiO_2 for NO reduction with H2 in the presence of O_2 and SO_2 .

(2) The promotion effect of alkali metals and alkaline earth metals was in the order of Li > Na > K > none ~ Rb > Cs, and Ba > Sr ~ Ca > none > Mg, respectively.

(3) The effect of Li addition was observed only at high O_2 concentrations.

(4) It is concluded that the role of Li is to prevent the deterioration of the catalytic activity by retarding the oxidation of Ir metal on SiO_2 , which is the catalytically active species.

5. REFERENCES

- [1] N. Fritz et al., SAE paper, 1999-01-0111.
- [2] T. Tanaka, 22nd International Vienna Motor
- *Symposium*, p.216-228 (2001).
- [3] M. Iwamoto and H. Yahiro, *Catal. Today*, 22, 5 (1994).
- [4] H. Hamada, Catal. Today, 22, 21 (1994).
- [5] R. Burch, Catal. Today, 26, 185 (1995).
- [6] K. Yokota, M. Fukui and T. Tanaka, *Appl. Surf. Sci.*, 121/122, 273 (1997).
- [7] A. Ueda, T. Nakao, M. Azuma and T. Kobayashi, Catal. Today, 45, 135 (1998).
- [8] R. Burch and M. D. Coleman, *Appl. Catal. B.* 23, 115 (1999).
- [9] M. Machida, S. Ikeda, D. Kurogi and T. Kijima, *Appl. Catal. B*, 35, 107 (2001).
- [10] T. Yoshinari, K. Sato, M. Haneda, Y. Kintaichi and H. Hamada, *Catal. Commun.*, 2, 155 (2001).
- [11] T. Yoshinari, K. Sato, M. Haneda, Y. Kintaichi and
- H. Hamada, Appl. Catal. B, 41, 157 (2003).
- [12] T. Yoshinari, K. Sato, M. Haneda, Y. Kintaichi and H. Hamada, J. Jpn. Petrol. Inst., 46, 264 (2003).