Negative Thermopower Induced by Entropy Backflow

W. Kobayashi¹, I. Terasaki^{1, 2, 3}, M. Mikami² and R. Funahashi^{2, 4}

¹Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan

Fax: 81-3-5286-3854, e-mail: kobayashi-wataru@suou.waseda.jp

²CREST, Japan Science and Technology Agency, Tokyo 108-0075, Japan

³PRESTO, Japan Science and Technology Agency, Tokyo 108-0075, Japan

⁴National Institute of Advanced Industrial Science and Technology, Osaka 563-8577, Japan

In the strongly correlated electron system, negative thermopower can be obtained by a mechanism that a net entropy flows along the opposite direction of the hole current. This "entropy-backflow" mechanism can make the thermopower of hole-doped conductor negative. We have synthesized Ca(Mn₂Cu)Mn₄O₁₂ in which a hole is doped by the substitution of Cu for Mn, and obtained $-33 \,\mu$ V/K at 1080 K. The value in the high temperature limit is estimated to be $-79\pm3 \,\mu$ V/K, which is qualitatively consistent with the theoretical prediction.

Key words: thermoelectric material, n-type conductor, entropy backflow, Mn oxide

1. INTRODUCTION

Since in 1997 the high thermoelectric performance was discovered in the layered Co oxide $NaCo_2O_4[1]$, the strongly correlated electron systems have been studied extensively as a possible candidate for a thermoelectric material. Following $NaCo_2O_4$, other layered Co oxides, Ca-Co-O[2] and Bi-Sr-Co-O[3] have been found to have a good thermoelectric performance.

The conversion efficiency of a thermoelectric material is characterized by the figure of merit $Z = S^2/\rho\kappa$, where S, ρ and κ are the thermopower, the resistivity, and the thermal conductivity, respectively. Consequently a good thermoelectric material has the large S, the small ρ and κ . Funahashi *et al.* reported that the maximum of the dimensionless figure of merit ZT is larger than 1.2 at 1000 K for Ca-Co-O[2], which means that the layered cobalt oxides might be the best family among all the thermoelectric materials.

Thermoelectric devices are made from a couple of p and n-type thermoelectric materials. $NaCo_2O_4$ is a p-type thermoelectric oxide, and there are no n-type thermoelectric oxides comparable with $NaCo_2O_4$. In addition, n-type conductors themselves are fewer in number than p-type conductors in the transition-metal oxides. In the strongly correlated electron systems, however, a negative thermopower can be obtained in a hole-doped system. Their thermopower in high-temperature limit is expressed as [4],

$$S = \frac{k_{\rm B}}{e} \ln \frac{g_A}{g_B} \frac{p}{1-p},\qquad(1)$$

where g_A and g_B represent the degeneracy of the site configurations of A and B ions, respectively. *p* represents the concentration of the B ion. This equation is a generalized Heikes formula[5], and explains the large thermopower of the layered Co oxides. According to this equation, we can obtain a negative thermopower through the term of $-k_B/e \cdot \ln(g_A/g_B)$ in a hole-doped system if $g_A>g_B$. Perovskite Mn oxides have Mn³⁺ and Mn⁴⁺ ions of the high-spin state (HS), which can be a good test for Eq.(1). Mn³⁺ (HS) has the electron configuration of $(t_{2g})^3(e_g)^1$ with the spin S=2. Thus $g_{Mn^{3+}}$ is calculated to be 10, where 5 comes from S, and 2 comes from e_g orbitals. Similarly $g_{Mn^{4+}}$ is calculated to be 4. From these number, S is calculated to be $-k_B/e \cdot \ln(10/4) = -79 \ \mu V/K$ when p=0.5. This negative thermopower is caused by a mechanism that the net entropy flows along the opposite direction of the hole current (see Fig. 1). This "entropy-backflow" mechanism can make the thermopower of hole-doped conductor negative.

We synthesized Ca(Mn₂Cu)Mn₄O₁₂ (x=0, 1) in which a hole is doped by the substitution Cu for Mn. Why we selected this system is that a crystal structure of Ca(Mn₂Cu)Mn₄O₁₂ is cubic, and e_g orbital is expected to be degenerate. In addition, Mn³⁺ and Mn⁴⁺ exist in Ca(Mn₂Cu)Mn₄O₁₂ by 1:1, where Eq.(1) reduces to – k_B/e · ln(g_A/g_B). Note that other perovskite manganites with Mn³⁺:Mn⁴⁺=1:1 are unstable against charge ordering. Therefore in this system, we expect the negative thermopower by the exchange Mn⁴⁺ for Mn³⁺. The purpose of this paper is to show the negative large

Fig. 1 Schematic view of the mechanism of the negative thermoelectric power in the hole-doped Mn oxide.

thermopower by entropy backflow.

2. EXPERIMENT

Polycrystalline samples of Ca(Mn₂Cu)Mn₄O₁₂ was prepared by a solid-state reaction. Stoichiometric amounts of CaCO₃, Mn₃O₄ and CuO were mixed, and the mixture was calcined at 870 °C. The product was finely ground, pressed into a pellet, and sintered at 930 °C for 12 h in air. The X-ray diffraction (XRD) of the sample was measured using a standard diffractometer with Fe K α radiation as an X-ray source in the ∂ -2 ∂ scan mode. All the peaks are indexed as the Ca(Mn₂Cu)Mn₄O₁₂ [6] as shown in Fig. 2.

The thermopower was measured using a steady-state technique, below room temperature in a liquid He cryostat, and above room temperature in an electric furnace. A temperature gradient of 0.5 K/mm was generated by a small resistive heater pasted on one edge of a sample below 500 K and by cooling one edge of a sample by an air pump above 500 K, and was monitored differential thermocouple made bv а of copper-constantan below room temperature, and by that of platinum-rhodium above room temperature. The thermopower of the voltage leads was carefully subtracted.

3. RESULT AND DISCUSSION

Figure 3 shows the crystal structure of $Ca(Mn_{3,x}Cu_x)Mn_4O_{12}$ (x=0, 1). The large light spheres, the dark spheres, and the octahedra represent Ca, Mn (Cu), and MnO₆, respectively. The crystal symmetry is cubic with a doubling of the ideal ABO₃ perovskite cell. The doubling of the unit cell is due to the ordering of the Ca and Mn(Cu) ions and a tilted three-dimensional network of MnO₆ octahedra sharing corners. The Mn-O-Mn angle is about 142°, because of Cu²⁺ and Mn³⁺ having a small ionic radius for A site.

Figure 4 shows the thermopower of Ca(Mn₂Cu)Mn₄O₁₂. The inset schematically shows the electron configuration of Mn³⁺ and Mn⁴⁺ and the two dotted lines give the thermopower at the high-temperature limit, respectively. At 220 K, the thermopower becomes from positive to negative in spite hole-doped of system. Resistivity of $Ca(Mn_{3-x}Cu_x)Mn_4O_{12}$ decreases with increasing x as shown in ref. [7], which strongly suggests that the substitution of Cu^{2+} for Mn^{3+} supplies a hole in the system. From 100 to 500 K, the thermopower changes slowly, and from 500 to 800 K the thermopower stays near -27 μ V/K. This value is very close to $-k_{B}/e$. $\ln(5/4) = -20 \ \mu V/K$. As shown in the inset of Fig. 4, ln(5/4) is expected for non-degenerate e_g orbitals. The splitting energy of eg orbitals will be larger than 800 K, and the thermopower begins to deviate from $-27 \,\mu V/K$ above 800 K. Eventually it reaches $-33 \mu V/K$ at 1080 K, and goes towards $-79\pm 3 \,\mu\text{V/K}$ as $T \rightarrow 8$. This value is nearly equal to $-k_B/e \cdot \ln(10/4) = -79 \,\mu V/K$ of the theoretical prediction. This implies that as the temperature becomes high, the degree of freedom of the eg orbital recovers. Palstra et al. estimated that the high-temperature-limit thermopower of La1-xCaxMnO3 was $-20 \ \mu V/K \ (= -k_B/e \cdot \ln(5/4))$ [8]. We think that their measured temperature was not high enough to find the degeneracy of eg orbital. This indicates that the

Fig. 2 The X-ray diffraction pattern of Ca(Mn₂Cu)Mn₄O₁₂

Fig. 3 The crystal structure of $Ca(Mn_{3-x}Cu_x)Mn_4O_{12}$. The large light spheres, the dark spheres, and the octahedra represent Ca, Mn (Cu), and MnO₆, respectively.

Fig. 4 The thermopower of high-temperature limit of $Ca(Mn_2Cu)Mn_4O_{12}$. The insets show the configurations of Mn^{3+} and Mn^{4+} at the temperature, respectively.

thermopower of $Ca(Mn_{3,x}Cu_x)Mn_4O_{12}$ is affected by the degeneracy of e_g orbital as well as the degeneracy of the spin.

4. SUMMARY

We synthesized Ca(Mn₂Cu)Mn₄O₁₂ in which a hole is doped by the substitution Cu for Mn. Mn³⁺:Mn⁴⁺=1:1 is realized, where $-k_B/e \cdot \ln(g_A/g_B)$ is expected to be -79 μ V/K. The thermopower of Ca(Mn₂Cu)Mn₄O₁₂ is observed to be $-33 \,\mu$ V/K at 1080 K and about $-79\pm3 \,\mu$ V/K as $T \rightarrow 8$, which is quantitatively consistent with the theoretical prediction. This negative thermopower is caused by a mechanism that the net entropy flows along the opposite direction of the hole current. This "entropy-backflow" mechanism can make the thermopower of hole-doped conductor negative.

ACKNOWLEDGEMENTS

The authors appreciate T. Katsufuji for fruitful discussion. This work was supported by Grant-in-Aid for JSPS Fellows.

REFERENCES

[1] I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B56, R12685 (1997).

[2] R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka, Jpn. J. Appl. Phys. **39**, L1127 (2000).

[3] T. Itoh and I. Terasaki, Jpn. J. Appl. Phys. 39, 6658 (2000).

[4] P. M. Chaikin and G. Beni, Phys. Rev. B13, 647 (1976).

[5] W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B62, 6869 (2000).

[6] B. Bochu, M. N. Deschizeaux, J. C. Joubert, A.

Collomb, J. Chenavas, and M. Marezio, J. Solid. State. Chem. 29, 291 (1979).

[7] Z. Zeng, M. Greenblatt, J. E. Sunstrom IV, M. Croft, and S. Khalid, J. Solid State Chem. 147, 185 (1999)

[8] T. T. M. Palstra, A. P. Ramirez, S-W. Cheong, B. R. Zegarski, P. Schiffer, and J. Zaanen. Phys. Rev. B56, 5104 (1997).

(Received October 13, 2003; Accepted January 16, 2004)