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The theory of thermoelectric effects are reinvestigated for insulators or semiconductors at low temperatures. 
It is found that the famous relations established by Lord Kelvin for metals in 1851 must be modified at low 
temperature limit of the intrinsic semiconductors in order to be consistent with the third law of the 
thermodynamics. Many-body effects are also discussed on the basis of Mahan's theory, and it is found 
that Seebeck coefficient is modified from S(T)oc lff to S(T) oc T at low temperatures for the Kondo 
insulators because the quasi-particle density of states within the gap becomes fmite due to the finite 
life-time of electrons. 
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1. INTRODUCTION 
Recently, some of the strongly correlated materials 

are attracting renewed interests because of a possibility 
for a new and efficient thermoelectric device[1]. 
Especially, the compounds called as the Kondo 
insulators[2] show rather large thermopower at low 
temperatures, being suitable for a refrigerator without 
cpolant in the lower temperature range. It seems, 
however, that the theory for the thermoelectric effects 
has not yet been fully developed either for the insulators 
nor for the systems with strong correlation. 

In this article, we will focus on the theory of the 
thermoelectric effect in insulators and point out for the 
first time that ·the famous Kelvin's relations, which were 
analyzed and established by Lord Kelvin[3] 150 years 
ago, must be modified for the insulators or the intrinsic 
semiconductors at the low temperature limit. Next, we 
will discuss effects of many-body interactions on the 
thermoelectric coefficients and give a formula for the 
heat current based on Mahan's theory[1]. We will also 
explain how the behavior of the thermopower due to the 
non-interacting electrons or holes in ordinary 
semiconductors might be changed in the Kondo 
insulators with strong correlations at low temperatures. 

T To To T+L1T 

·~I metal a! metal b I metal a I~ • 
A B C D 

Fig.1 A schematic figure to derive Kelvin's relations. 
A unit positive charge is quasi-statically moved along 
the path ABCDA to prove Kelvin's relation. 

2. RECONSIDERATION OF KELVIN'S RELATION 
IN INSULATORS 

Lord Kelvin[3,4] analyzed a system depicted in Fig. 1 
which consists of the metals a and b. The temperature 
difference between B and C is set equal to !1T, and T 
and T0 are the temperatures at C and A (D), respectively. 
(Note that the direction of the gradient is opposite to that 
in ref.[4]. A unit positive charge is quasi-statically 
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moved along the path A-B-C-D and is brought back to A. 
Thereby the Peltier heat II.b(T+L1T) is emitted at B and 
IIab(T) is absorbed at C. (Note that IIba(T)=- IIab(T) is 
assumed here.) The Thompson heat T~T is emitted 
between B-C and Tal1T is absorbed between A-B and 
C-D (Ta and Tb denote the Thomson coefficients). On 
transferring the charge from D to A the work Sabt1T 
must be added to the electron system from the outside in 
order to overcome the thermoelectric voltage e.b= 
s.~T. Thus we can set up the following equations to 
express the first and the second laws of the 
thermodynamics: 

Sabl1T- IIab(T + !1T) + IIab(T) + (ra- r~)L1T = 0, (1) 

_ IIab(T + LlT) + IIab(T) + ra- rh !1T = O (2) 
T +LlT T T 

and derive the famous Kelvin's relations: 

S (T)= IIab(T) S (T)= (ra(T')-rb(T')JT'(3) 
ab T ' ab J0 T' 

Note that the heat or the work added to the electron 
system are count as positive quantities in eqs. (1) and 
(2). 

It is well known that the absolute Seebeck coefficient 
is given by S - -(Ed.t)/le\T for the semiconductors at 
low temperatures when the carriers are electron-like, 
hence s.b=S.-Sb - (Ecb-Ec•)tle\T. Here, Ec and f..l denote 
the conduction band edge and the chemical potential, 
respectively. However, from the Kelvin's relations (3), 
one is forced to face the following puzzles: (A) 
according to the first equation in (3), one obtains n.b(T 
-->0) --> (Ecb-Ec•)tle\, whereas (B) S(T) must vanish at T 
--> 0 if one uses the second equation in (3). The puzzle 
(A) means that one can remove finite amount of heat 
from the body at absolute zero temperature, which 
seems to violate the third law of the thermodynamics. 

It is possible to argue that the puzzle (B) may be 
resolved if one change the lower limit of integration 
from 0 to oo. The puzzle (A) is more serious. But I 
found that it has occurred because we have neglected a 
work necessary to move a negative charge from the 
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bottom of the conduction band at Ec a to the region in the 
middle with the band edge Ec b when Ec b > Ec a and T --> 
0, as shown in Fig. 2. In this case, we have to add a 
term W=(Ecb-Ec")/lel in eq. (1) as a work explicitly, 
because no electrons are thermally distributed to the 
levels with higher energy. At finite temperatures, some 
numbers of electrons are thermally excited to the states 
above Ec b, and can proceed to the region b without 
explicit work from the outside. However, at the zero 
temperature limit, an electron, if it is placed at the very 
edge of the conduction band bottom Ec", is not excited to 
the higher energy and can not move into the region b 
without an assist W. 

Fig.2 A schematic figure of the energy bands for three 
connected semiconductors a-b-a, where the hatched 
regions indicate the conduction bands, whereas the 
regions beneath them are the energy gaps. A negative 
charge is moved across the junction between the two 
semiconductors a and b with the conduction band 
bottom Ec" and Ecb, when a positive charge is moved 
from left to right. 

It should be also necessary to point out that the 
relation ITba(T)=- rr.b(T) assumed in deriving (1) does 
not automatically hold here, which was overlooked in 
my previous analysis on this subject[5]. Thus, we 
assume ITba(T) and rr.b(T) are independent of each other, 
and obtain 

sab(T)!'>.T- ITab(T + I'>.T)- nba(T) + (ra- Tb)/',.T + w = 0 

(4) 
instead of (1). Combining (2) and (4), we can derive 
the following relations 

T 
ITba(T)=-TSab(T)- /',.TW, 

Sab(T + /',.T)- sab(T) = Ta- Tb 

ilT T 

(5) 

(7) 

Taking the limits T --> 0, ilT --> T and T+ilT --> T, 
we finally obtain the modified Kelvin's relations as 
follows: 

ITba(T) = -TSab(T), (8) 

ITab(T) = TSab(T) + W, (9) 

S (T)= fTT/T')-Tb(T')dT'. (10) 
ab Jo T' 

In eq. (8), T must be taken as equal to 0. It should be 
noted that ITba(T)=- ITab(T) does not hold. Instead, we 
have the relation ITba(T)=- ITab(T)+W, which can be 
obtained from (3) directly if one takes the limits T --> 0, 
/'>.T --> T and T+/'>.T --> T. 

Eqs. (8)-(10) can be understood if one consider how a 
cooling apparatus works as a thermodynamic cycle as 
depicted in Fig. 3. The heat which can be removed 
from a body connected at C (or from the lattice system 
of the semiconductors a and b connected at C), 

q=IITba(T)I=TSabCT), is expected to vanish at T --> 0 limit 
in order to be in accord with the third law of the 
thermodynamics, whereas the heat emitted at B is 
Q=q+W= TS.b(T)+W. At zero temperature limit, we 
expect that this heat Q may not exceed W, which means 
that TSab(T) --> 0 at T --> 0. Therefore, 

q=IITba(T)I=TSab(T) --> 0 may hold instead of the 
ordinary formula IITba(T)I==I ITab(T)I= (Ecb-Eca)/le even 
at T==O. Thus the finite value flab--> (Ecb-Eca)/lel is an 
artifact of regarding the work to be done as the heat to 
be removed and the neglect of the relation ITba(T) =F 
-IT.b(T). 

Onsager's relation (the first equation of (3)) does not 
hold, since the linear response theory is not applicable in 
the present case at T -> 0. Note that the equations 
(8)-(10) hold only at the low temperature limit and the 
term W should quickly disappear if the temperature is 
raised only slightly. A more general expression at 
arbitrary temperature are still to be found. Thereby, 
the inclusion of the nonequilibrium effects will be 
necessary. 

Fig.3 A schematic figure of a thermodynamic apparatus 
for cooling. When a work W is added to the system, a 
heat q is removed from the low-temperature object, and 
the heat Q=q+W is put out to the high-temperature one. 

3. SEEBECK COEFFICIENT AND MANY-BODY 
EFFECT 

A general theory for the thermoelectric transport has 
been developed by Mahan[1,6], and recently by 
Kontani[7] further, based on the Fermi liquid theory. It 
should be noted that the heat conveyed by the carriers is 
not equal to Ek-!l but a correction due to the interaction 
exists. For example, using Mahan's theory[!], we can 
derive the following expression of the heat current jQ for 
the Hubbard model in the second-quantized form 

H = L"'k<.c•" +Ul:n;tn;t (ll) 
ko-

as 

jQ = 2:Ct:.- JL)~c:Ao- + L:u~(c1:cio- n,_" +ni_"J, 
ko- ko- 2 k 

(12) 
where Ek and vk denote the band energy and the velocity 
of an electron with wave vector k, c \cr and cka the 
creation and annihilation operators of electrons, 
nicr=c+icrcicr the number operator at site i, ( ... ) k 
denotes the Fourier transformation from i,j to k and !l 
the chemical potential. It can be seen that the second 
term express the heat carried by the electrons due to the 
repulsive interaction U between them. 

Using the linear response theory, the Seebeck 
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coefficient can be expressed by the following simple 
formula[ 1, 7] 

1 
fde (E:-f.l)L(e)(- 8f) 

S~)=- & 
eT fde L(e)(-Cf__) 

oe 

(13) 

with 

when the vertex corrections (VC's) can be neglected, as 
would be the case for the heavy-fermion rare-earth 
compounds. VC's cannot be neglected for high Tc 
cuprates[7]. It should be noted that the second term in 
eq. (12) due to the interaction is not added to the term 
(E-!J.) in eq. (7). It is because all the interaction effects 
were absorbed in the Green's function (and in the VC's). 

The electronic states of the Kondo insulators can be 
described most simply by the periodic Anderson model 
(PAM) 

H = ~.:>tc:,.ct,. + }2CVtft:ck,. + v:C:ufk,.) 
ka ka (15) 

+Ef }2nfi,. +U}2niJtniJ-l-
ia 

at half-filling. Here, the second and the third terms 
denote the mixing between c and f electrons and the 
f-electron level energy, respectively. The last term 
indicates the Coulomb repulsion between f-electrons. 
Degeneracy of the conduction bands and the f-electron 
states are neglected. A more realistic model is 
discussed in [8]. 

The heat current is expressed as 

jQ = _ _!_ L(~);lti)Ruc;:ci, + :LvtiiRii(c;:fiu + H.c.) 
2 ija i ija 

(16) 
for P AM in the site representation, where tij and Rii are 
the hopping matrix element and the hopping vector 
between i and j sites, respectively. The second term 
does not appear in the expression for the Seebeck 
coefficient, and we obtain exactly the same form as (13). 
In (14), we have to use the conduction electron Green's 
function Gc(k.E) of PAM. The Coulomb interaction 
between f-electrons produces a finite imaginary part of 
the self-energy due to the mutual scattering at finite 
temperatures. This makes the quasi-particle density of 
states finite within the gap at T>O. Therefore, the 
Seebeck coefficient of the Kondo insulators becomes 
metal-like S(T) ex: T at low but finite temperatures[9], 
whereas S(T) cx:r' at higher temperatures. 

Calculation of the f-electron self-energy L:t( E) is done 
using the self-consistent second-order perturbation 
theory combined with the local approximation in the 
spirit of the dynamical mean-field theory for strongly 
correlated electron systems[9]. Eq. (14) is evaluated 
approximately as L(E)=.:vc(EipcCE)tc(E), where Vc, Pc, 'tc 
are the velocity, the density of states and the relaxation 
time of conduction electrons, respectively, and are 
calculated from 

1 (17) 
Pc(&)=- mVIm ~ y2 

& - &k- -------­
&-Et -L:t(&) 

vz 
rJe)-' = -2Im (18) 

e-E1 -2:1 (&) 

We have assumed that vc(E) and Vk are independent 
of E or k. The half-width of the conduction band is 
taken as the unit scale of the energy. L1 denotes the 
resonance width of the f state, defined by t1=npc(EF)V2

, 

where Pc(Ep) is the density of states of the conduction 
band at the Fermi energy Ep. Details of the calculation 
will be found in [10]. Example of the numerical 
calculations are displayed in Fig. 4 for the parameters 
U=2, t1=0.5 and various values of Et. ErO, -0.5 and 
-1.5 correspond to the metals, whereas Er-1 and -1.2 
the insulators. Ep=-1 corresponds to the electron-hole 
symmetric case and S(T) vanishes for all temperatures. 
Ep=-1.2 corresponds to the case of a Kondo insulator. 
Therefore, resistivity diverges at low temperatures. 
The absolute value of the Seebeck coefficient (solid line 
with open circles in Fig. 4) increases with decreasing 
temperature, which is a typical semiconducting behavior. 
It, however, decreases towards zero at the lower 
temperatures. This is due to the life-time effect 
originating from the many-body scattering mentioned 
above. 

200 

U=2, V=0.5 

• Et=O 
& Er-0.5 
0 Er-1 
" Er-1.2 
.. Er-1.5 

-6oooL-~--:o.LI-~-=o;:I.:;:2 ==:::"Jo.3 
T[K] 

Fig. 4 Seebeck coefficients for the periodic Anderson 
model for U=2, V=0.5 and various values ofEf. 
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Fig. 5 The quasi-particle density of states of conduction 
electrons pc(E) for U=2, V=0.5, Ep=-1.2 and T=O, 0.03, 
0.2 and0.7. 
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The behaviors of Pc(E), 'tc(sr1 and the product 
Pc(E)'tc(E), which contributes to L(s), are displayed in 
Figs. 5-7 for U=2, V=0.5, EF=-1.2 and the temperatures 
T=O, 0.03, 0.2 and 0.7. In Fig. 5, one can see that the 
quasi-particle density of states of conduction electrons is 
strongly temperature-dependent and the gap is filled up 
as the temperature increases. In Fig. 6, the inverse 
relaxation time 'tc(sr1 is displayed, where the sharp 
spike at s-O and T-O is due to the resonance at 
Ef+ReLt{O) , as is seen from eq.(l8). The gap size in 
-rcCsr1 is wider than that in Pc(E) because an electron 
needs more energy to excite an electron-hole pair in 
addition to the energy with which it is excited to the 
conduction band. The product Pc(E)'tc(E) is displayed 
in Fig. 7. Although both Pc( E) and -rcCsr1 vanish within 
the gap at T--->0, Pc( E) dominates in the behavior of L(E), 

and therefore, overall shape of S(T) is determined 
mainly by Pc(s). In fact, S(T) can be reproduced by 
using the approximation L(s)~const. X p0(s). Thus, the 
energy dependence of -re( E) is not so important in L(s). 

1.5 .---.,----,.-----,-----, 

Fig. 6 The inverse relaxation time -rcCsr1 of conduction 
electrons for the same temperatures as in Fig. 5 is 
displayed. 
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Fig. 7 The products Pc(E)-rc(E) for the same temperatures 
as in Fig. 5 are displayed. 

It could be the case that S vanishes as an activation 
type S(T) ex: exp(-EglkaT) at the low temperature limit. 
It is not easy to discriminate between the two types of 
the behaviors S(T) ex: T and S(T) cc exp( -Eglk:B T) 

numerically at T--->0. Anyhow, our prediction that S(T) 
must vanish at low temperature limit because of the 
many-body effect, is qualitatively consistent with the 
observed behaviors[ll,l2], but the effect of the 
nonstoichiometry may not be neglected. Both 
interpretations seem possible for analyzing the 
experimental results. 

4.SUMMARY 
The thermoelectric effect in insulators or intrinsic 

semiconductors was reinvestigated theoretically. It 
was found that the famous relations established by Lord 
Kelvin for the thermoelectric coefficients must be 
modified at low temperature limit in order to be 
consistent with the third law of the thermodynamics. 
Many-body effect was also discussed and it was noted 
that new behaviors S(T) ex: T or ex: exp(-Eg!k:8T) 
should appear at low temperatures due to the interaction 
effect, and might be applicable to the analysis of the 
Kondo insulators. To elucidate the low temperature 
behavior, it may be necessary to consider the 
nonequilibrium effect of coupled electron and phonon 
systems. 
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